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Abstract

The location of cities is linked to access to trade, but security also matters, in par-

ticular for capitals. Here we document this phenomenon, and explore its implications,

in the context of Europe’s Great Power era. First we show that Great Power battles

tend to occur in shortest-distance corridors between belligerent powers’ capitals, ex-

cept where those corridors are intercepted by seas, mountains, and marshes. Then we

show that capitals locate closer to each other when they have more of these types of

geography between them. Finally, we show that city pairs are less likely to belong to

the same state if they have more of this geography between them, allowing us to use

geography to predict the territorial size and shape of Europe’s Great Powers. In sum,

our results suggest that terrain which slows down military incursions makes capitals

safer, allowing them to locate closer to each other; given all capitals’ locations, the

surrounding geography then shapes the associated state territories.

Keywords: Conflict, battles, state fragmentation, cities
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1 Introduction

[A capital’s] commercial and industrial

importance is less than that of other cities in the

same country, since the factors that influence the

choice of site for a capital are often political and

strategic rather than economic.

Spate (1942, p. 623)

It is well understood that the location of cities is linked to access to trade, i.e., connec-

tivity to other cities and/or natural resources. This has been shown in a recent and ex-

panding literature, using data on geography, historical trade routes, archaeological sites,

and more (see, e.g., Bleakley and Lin, 2012; Bosker and Buringh, 2017; Barjamovic et al.,

2019; Bakker et al., 2021; Flückiger et al., 2024).

However, connectedness is not only, or always, beneficial for cities; security matters

too, particularly for states’ political centers, i.e., their capitals. As the above quote from

the geographer Oskar Spate illustrates, this idea is not new. Bosker (2022, p.3) writes

that capital cities are often located “in places further away from a [country’s] borders or

coastline that are less vulnerable from attack by foreign powers.” Treivish (2016) argues

that capitals tend to be farther from state boundaries compared to similarly sized non-

capital cities. States have even on occasion moved their capitals in response to military

threats, as when the Royal Government fled from London to Oxford during the English

Civil War (Toynbee, 1970, Ch.6).

In this paper we revisit this idea and explore some interesting implications. We focus

on the Great Power era in Europe, which was an environment with intense interstate

competition, where threats to sovereign states come mostly from other states.

First we provide some suggestive evidence that Great Power capitals were indeed

targeted by competitors. We use data from Kitamura (2021) on geo-coded Great Power

battles and find that these tend to occur within 50 km wide shortest-distance corridors

between the capitals of the belligerents. There is much weaker evidence that battles oc-
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curred around state boundaries, or along corridors between the largest non-capital cities

of the Great Powers involved.

However, we do find that battles tend to deviate from the shortest-distance corridor

between capitals where it is intercepted by certain types of geography that were likely

difficult for armies to cross: seas, mountains, and marshes; we discuss other geography

variables as well, but these arguably make the most theoretical sense and also show the

strongest correlations. Our interpretation is that these types of geography tend to ex-

tend the effective military distance between capitals at a given geodesic (direct-route)

distance.1 In other words, we interpret these types of geography as separating.

This should have implications for where capitals are located. Specifically, we argue

(and illustrate in a model) that a more separating terrain should allow capitals to locate

closer to each other. Intuitively, such terrain helps protect capitals from threats originat-

ing from other capitals, making shorter geodesic distances viable. For example, Paris

and London may afford a shorter distance between them because of the English Channel,

while, e.g., St Petersburg (or Moscow) may need longer distances to its potential enemies’

capitals; consider, e.g., Napoleon’s invasion of Russia in 1812. Moreover, we should ex-

pect to see less of that pattern for non-capital cities, for which security concerns do not

carry the same weight.

To explore this, we use data on European city locations from Bosker et al. (2013) and

look at pairs of capital cities in 1800, the latest year for which they provide data and also

at the height of the Great Power era. We show that pairs of capitals tend to be geodesically

closer when they have more of the same types of geography between them that we found

affected battle locations, in particular seas and marshes (with some caveats for mountains,

as discussed later).

This result indeed holds for pairs of capitals but not for pairs of non-capital cities, as

we would expect if our theory is correct.

We also explore what implications this has for the size and shape of states. To do that,

1This interpretation is broadly consistent with a large body of work in military history on how geogra-

phy shaped warfare and campaign routes; see, e.g., Engels (1978) on Alexander the Great and Collins (1998,

Ch.1) for examples from modern times.
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we look across all city pairs in 1800 (i.e., not only capitals). We find that the likelihood

that both cities in a pair belonged to the same state 100 years later (i.e., in 1900, which

is when Europe was the most unified) is lower when they have more of the same types

of geography—seas, mountains, and marshland—between them. This is consistent with

what we observed for capitals: if a more separating terrain allows capitals to locate closer,

then such terrain should also be associated with more and smaller states within a given

geodesic distance, since each sovereign state has exactly one capital.

This also allows us to predict the size and shape of European Great Power states, based

on the locations of their capitals and the surrounding geography. In short, for each of city

in the Bosker et al. (2013) data we compute the predicted probabilities of it belonging to

the same state as different Great Power capitals and assign the city to the Great Power

with highest predicted probability. We find similarities, but also interesting differences,

between actual and predicted Great Power territories, which we think illustrate spatial

variation in state capacity, and viability of state territories as they appeared in 1900.

The rest of this paper is organized as follows. Section 2 discusses some of the existing

literature. Section 3 presents the data we use. Section 4 presents results referring to battle

locations. Section 5 then analyzes geodesic distances between pairs of capitals and the

likelihood that pairs of cities belong to the same state. A theoretical model is discussed

informally in Section 6, with details deferred to an Online Appendix. Section 7 concludes.

2 Existing Literature

The topics discussed here relate broadly to research on the relationship between trade,

war, borders, political unification, and development (e.g., Alesina and Spolaore, 2003;

Rohner et al., 2013; Gancia et al., 2022; Schönholzer and Weese, 2022; Spolaore, 2023; Lip-

inski, 2024). One contribution relative to Alesina and Spolaore (2003) is that we study the

location of capitals in relation to one another, rather than their own states’ borders.

We also differ by focusing on how geography shapes state territories, which connects

to an older debate about the link between Europe’s specific geography and high degree of

state fragmentation (see, e.g., Diamond, 1997; Jones, 2003; Hoffman, 2015; Ko et al., 2018;
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Scheidel, 2019; Kitamura and Lagerlöf, 2020; Allen, 2023; Fernández-Villaverde et al.,

2023; Weese, 2023). To test this hypothesis, earlier studies have explored the correlation

between border locations and geography (Kitamura and Lagerlöf, 2020), or simulated

quantifiable models of state expansion with geography as an input (Fernández-Villaverde

et al., 2023). Other papers discuss the role of geography for conflict, but not for state frag-

mentation or the location of capitals (see, e.g., Jia, 2014; Iyigun et al., 2017; Dincecco et al.,

2021, 2022, 2024).

One novelty with our empirical approach compared to all these is that we measure

geography, and its effect, not where borders are located, or where battles occur, but across

corridors between capitals. One motivation is that the locations of Great Power battles

in European history have not related to local conditions as much as traversing armies

crossing paths there.

Our “corridor” approach may have something in common with work on how spatial

proximity affects interstate conflict (e.g., Gleditsch and Singer, 1975; Bremer, 1992). More

recently, Spolaore and Wacziarg (2016) explore other distance measures (in particular ge-

netic distances), finding that geodesic distances are negatively correlated with interstate

conflict, also with various other distance controls. However, none of these papers ex-

plores where conflict occurs spatially or interacts with geography.

A large literature examines how geography affects the locations of modern cities, and

economic activity more generally. Examples include coastlines (Rappaport and Sachs,

2003; Michaels and Rauch, 2018), portage sites (Bleakley and Lin, 2012), and land produc-

tivity (Henderson et al., 2018), as well as proximate historical factors that might funda-

mentally depend on geography, e.g., the early emergence of statehood (Cook, 2024) and

agriculture (Dickens and Lagerlöf, 2023), and historical population density (Maloney and

Valencia Caicedo, 2016). We differ from these in our focus on how geography can impact

military security.

The theoretical links between security and the emergence of cities are explored by Dal

Bó et al. (2022), but not specifically in regard to capitals. Dincecco and Onorato (2016)

study the effect of battles on city growth, but not what determines battle locations, state

territories, or the location of capitals.
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3 Data

3.1 The Battle Data

Our starting point for the empirical analysis is a new battle dataset compiled by Kitamura

(2021). Most of it originates from Wikidata and Wikipedia.2 This source material changes

over time, but according to Kitamura (2021) edits to the information used here (i.e., years

and locations) tend to be few and minor.

The full dataset contains information about, e.g., start and end years of battles, their

geo-coordinates, and lists of belligerent powers on different sides of the battle.3 Although

it covers battles throughout human history and across the world, we focus on Europe and

an era in which regular Great Power (GP) conflicts shaped its political geography. To that

end, we consider all battles with geo-coordinates within a rectangle with its northwest-

ern and southeastern corners in Reykjavík and Baghdad, respectively. Temporally, we

initially restrict attention to battles with a start year from 1525 (the birth of Prussia) up to

and including 1913, to avoid battles from World War I and onward, when new technolo-

gies likely altered the impact of geography on warfare. Choosing 1913 as the exact end

point is not important, as explained below. We discuss separately what we can learn from

the period 1914-1945.

Our interest is on battles involving the major historical GP states in Europe. Obviously,

the identities, names, regimes, and territories of these powers have changed over time.

For example, one GP has been known as England, Great Britain, and the United Kingdom

(of Great Britain and Ireland) at different points in history. Germany and Prussia have

intertwined histories, the latter being (a dominant) part of the former when the German

Empire was created in 1871.

Here we consider the following seven GPs: England/Great Britain; France; Russia;

2There are other papers using Wikidata and Wikipedia for different applications (see, e.g., Laouenan

et al., 2022, who study notable people in human history), but to the best of our knowledge Kitamura (2021)

is the first to compile data on battles using this source.
3The dataset also contains information on outcomes of battles (who won or lost, etc.), but we do not use

that information here.
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Prussia/Germany; Austria/Habsurg Empire/Austria-Hungary; Spain; and the Ottoman

Empire. These are the ones discussed in most detail in the influential study of the Eu-

ropean Great Power system by Levy (1983).4 The matching of battles to GPs was done

manually by Kitamura (2021), who provides further details on this process.

These GPs also had relatively stable capital locations, with two exceptions: Moscow

was the Russian capital before 1712 and after 1917, and 1728-1730, and St Petersburg

otherwise; Königsberg (Kaliningrad) was the capital of Prussia before 1701 and Berlin

after. We return to these changes in capitals below.

Since corridors can be constructed only between different Great Power capitals, we

do not include battles where the same state (by our definition) was the only belligerent

involved, i.e., on both sides of the battle. This avoids most civil war battles, except those

where another GP was involved on one side of the battle (primarily during the English

Civil War and the French Revolution).

We also ignore battles with imprecise location data. The typical example is a battle

somewhere along a river or valley, where the sources do not specify which part (see Ki-

tamura, 2021, for further details).

We include naval battles in the benchmark analysis, but the results are robust to drop-

ping these (see Section A.2 of the Online Appendix). It arguably makes sense to include

naval battles, since a negative effect of sea on the likelihood of battle might otherwise

seem obvious.

The seven GPs can form 21 pairs in total, but some of these fought no, or very few,

battles over the period considered. In our benchmark analysis, we drop those pairs which

fought fewer than ten battles, leaving eleven pairs in total. This serves partly to focus on

Great Power pairs that were in regular and long-lasting conflict. Section A.2.4 of the

Online Appendix presents results based on all 21 pairs.

Considering only pairs that fought at least ten battles also ensures that we include

almost no battles involving Russia or Prussia when they had Moscow and Königsberg,

4Three more European states that were defined as Great Powers by Levy (1983) are ignored here, namely

Sweden, Italy, and the Netherlands. However, these were not GPs over nearly as long periods of time as

the other seven; see Levy (1983, Table 2.1).
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respectively, as capitals.5 That is, treating St Petersburg and Berlin as the capitals of Russia

or Germany/Prussia makes sense with this restriction.6 More generally, even though

their territories and regimes were often fluid, we can think of these seven GPs as having

relatively fixed political centers, at least at times when they were involved in conflict.

The upshot is a set of 684 battles fought between these eleven different pairs of GPs,

starting with the Battle of Pavia in 1525 and ending with the Battle of Plovdiv (or Battle

of Philippopolis) in 1878. In other words, although we chose 1913 as the end point, this

choice in not too important, since these GPs did not fight each other in the European

theatre after 1878 until the start of World War I.

3.1.1 Cell Data

We measure the occurrence of battles across space by dividing the rectangular area con-

sidered (with corners in Reykjavík and Baghdad) into cells of equal size, with sides of one

degree latitude and longitude.

We want our results not to be based on cells in the extreme periphery of Europe, where

no battles are likely to be fought, so we drop all cells north of the most northerly cell in

which battles took place between any of the eleven pairs, and cells south of the most

southerly such cell, etc. This leaves us with 1,450 cells in total. For each cell, we can

measure the number of battles fought between each of the eleven GP pairs.

All in all, this gives us a dataset with 11 × 1, 450 = 15, 950 observations, where the

unit of observation is a combination of a GP pair and a cell. The outcome of interest in

the battle analysis is an indicator for whether a cell had any battles, or not, involving the

relevant GP pair. Although there is no time variation, the data structure is panel-like,

in the sense that it displays variation across both cells and GP pairs; for example, a cell

could record battles between England and France, but not between France and Spain, or

5The single exception is the Battle of Turckheim in 1675, involving Prussia and France, which we drop

separately, since Königsberg was the capital. This has no meaningful effect on the results.
6Berlin would probably have been a more important power center than Königsberg ever was. The choice

between Moscow and St Petersburg might be less obvious (note, e.g., that Napoleon’s 1812 invasion of

Russia targeted Moscow), but assigning Moscow as capital instead of St Petersburg does not change the

results much; see Section Section A.2.4 of the Online Appendix.
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England and Spain.

Figure 1 shows a map of the precise battle locations and which cells are coded as battle

cells for at least one GP pair.

3.2 Geography and Shortest-Distance Corridor

The variable that we call the Shortest-Distance corridor (SD corridor, for short) is an indica-

tor for cells intersected by a 50 km buffer zone around the shortest-distance line between

the relevant pair of capitals. This line takes into account the curvature of the Earth, so it

does not look like a straight line on a projected map.

Different segments of a SD corridor may of course have different access to roads, ports,

and rest stops. However, such factors seem endogenous and probably changed over time

(and across seasons); for example, railways began to matter later in our study period.

Moreover, troops need not necessarily follow roads but could often travel across open

fields or frozen waterways, and absent geographical obstacles the most cost efficient path

should be the shortest route. Our approach is to use geography data to capture factors

that we believe may have forced deviations from that route.

We consider three geography variables. Most obviously, mountains and marshland

must have been more difficult to cross with cavalry and cannons. The case for seas is

less obvious, as civilian transport is often easier by ship than on land. However, troops

can access food and water more easily on land, and loading/unloading military material

onto/from a ship can be risky and time consuming; Armadas can often be spotted at long

distances.

Given our choice of geography variables, we use the following sources. Marshland

data are from the Global Lakes and Wetlands Database maintained by the World Wildlife

Foundation (linked to here; Level 3, Categories 4 and 5). We use a relatively broad def-

inition, including freshwater marshes, floodplain and swamp forest, and flooded forest.

The binary cell-level variable is an indicator of whether a cell is intersected by anyone of

those types of marshes.

To define mountains we use elevation data from NOAA National Centers for Environ-
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mental Information (linked to here). A cell is defined as having a mountain when its mean

elevation exceeds 800 meters, with alternative cutoffs explored in the Online Appendix.

We define sea as the absence of land, using data from GADM. The sea indicator equals

one when a cell is intersected by sea, i.e., not fully covered by land.

Figure 2 illustrates the battle cells for six GP pairs, together with the associated shortest-

distance corridors, and cells where each of the three geography variables are present.

Table A.1 in the Online Appendix presents summary statistics for the main variables

used in the battle analysis.

3.3 City and State Data

The city data are from Bosker et al. (2013), who provide information on multiple European

cities at the turns of the centuries from 800 CE to 1800 CE. City population is reported for

city-years when they exceed 5,000. The dataset also contains geo-coordinates, as well as

information about which cities were capitals at different points in time.

The spatial coverage is approximately Europe and surrounding areas, such as North

Africa and parts of Near East.

Our benchmark analysis in Section 5 considers cities with a population above 5,000

in 1800 CE, with some robustness checks in the Online Appendix. We choose the year

1800 because it is the latest available in Bosker et al. (2013). The unit of analysis is a

pair of (capital) cities, with geography measured across buffer zones around the shortest-

distance line between cities (or capitals).

The sources for the geography variables are the same as for the cell-level data (see

Section 3.2 above), except that we here measure sea using Natural Earth. Different from

the cell-level analysis, where we constructed binary indicators, we here use the fraction

of the relevant buffer zone covered by mountains, marshland, and sea. This makes more

sense in this context, since the corridors are so much larger geographical areas than the

cells.

Data on state borders are from Euratlas (Nüssli, 2010). These contain geospatial infor-

mation on the borders of sovereign states in Europe and surrounding areas at the turn of
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the centuries from 1 CE to 2000 CE. We use these data to determine which pairs of cities

belonged to the same sovereign state. The benchmark analysis considers state borders in

1900 based on Euratlas, while the Online Appendix explores other years and data sources.

Table A.17 in the Online Appendix presents summary statistics for the main variables

used in the city data analysis.

4 Battle Data Analysis

For the battle-level analysis the unit of observation is a one-degree cell. We consider cells

both with and without battles, thus allowing us to use information about locations that

did not see any battles. For each cell we measure if there were any battles fought there

during the period of interest and involving the GPs under consideration.

More precisely, our main outcome variable is an indicator variable denoted Bi,p, taking

the value one if a battle between pair p occurred in cell i over the benchmark period (1525-

1913), and zero otherwise. (Section A.2 of the Online Appendix considers an intensive-

margin measure as the outcome variable, i.e., the number of battles rather than a battle

indicator.)

Our independent variables of interest include three geography variables, all binary

indicators. H800,i equals one if average elevation in cell i exceeds 800 meters above the

sea, and zero otherwise. (We consider different heights in Section A.2.) Mi is an indicator

for a marsh (or swamp) intersecting cell i. Si indicates whether the cell is intersected by

sea.

The remaining variable of interest is the shortest-distance corridor. Like the geography

variables, this is also a binary indicator, and denoted by Di,p. Note that Di,p varies both

across cells and GP pairs.7

7For example, if p refers to the pair England-France, and cell i intersects with the shortest-distance cor-

ridor between London and Paris, then Di,p = 1, while Dj,p = 0 for cells j ̸= i off the London-Paris corridor,

and Di,q = 0 for all GP pairs q ̸= p, whose corridors do not cover cell i.
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4.1 Direct Effects

We are going to present results from a few different regression specifications. Consider

first this:

Bi,p = α + βDDi,p + λSSi + λHH800,i + λMMi + ωp + εi,p, (1)

where ωp is a GP pair fixed effect, and εi,p is an error term. If β̂D > 0, then battles tend to

happen more often in cells along the shortest-distance corridor than elsewhere.

The first three columns of Table 1 bear this out. In column (1) we consider a specifi-

cation without any geography controls or fixed effects; column (2) adds geography con-

trols; and column (3) adds both geography controls and pair fixed effects. Throughout

β̂D comes out as positive and significant. We also note that all three geography measures

carry negative coefficients, suggesting that battles tend to occur on land, and in terrain

that is not too mountainous or marshy. However, these direct effects are hard to interpret,

since geography can vary with, e.g., distance from the corridor.

We can also add cell fixed effects to the formulation in (1), absorbing the geography

controls, and giving us the following specification:

Bi,p = βDDi,p + ωp + γi + εi,p, (2)

where γi capture the cell fixed effects. This is estimated in column (4) of Table 1, again

showing us β̂D > 0.

One possibility is that the positive coefficient on the shortest distance corridor merely

captures an effect from cells far away from the belligerent states, in regions where they

had no reason to fight. To address this, columns (5) and (6) of Table 1 consider the same

specifications as in columns (3) and (4), but restrict the sample to cells within 300 km of

the shortest-distance corridor. This shrinks the sample to about 10% of its original size.

While the estimated coefficient of interest shrinks in magnitude, it remains positive and

significant.

Finally, column (7) of Table 1 considers the same specification as in column (4), but

allows standard errors to be clustered at the pair and cell level. The corridor indicator

becomes slightly less precisely estimated, but remains significant at the 5% level.
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4.2 Interaction Effects

So far we have documented that GPs tend to fight more battles along their shortest-

distance corridors. Next we examine if our measures of geography tend to push battles

off that corridor. To that end, we estimate the following regression equation:

Bi,p = βDDi,p

+βSDi,pSi

+βH,800Di,pH800,i

+βMDi,pMi

+ωp + γi + εi,p,

(3)

where, as before, ωp and γi are fixed effects for GP-pair and cell, respectively, and εi,p is an

error term. As earlier, we expect β̂D > 0. Now we should also expect β̂S < 0, β̂H,800 < 0,

and β̂M < 0. As discussed above, we might expect this geography effect to be present in

all cells, not only along the corridor, but any such effects are absorbed by the cell fixed

effects.

In other words, we expect seas, marshes, and mountains to make the hypothesized

path of military advance deviate from the shortest route. If this is the case, it suggests

that these geographical characteristics increase the effective military distance between

the two GPs political centers, at given geodesic distance.

Table 2 considers a few different regressions involving these interaction effects. Columns

(1)-(3) show the results from three separate regressions, where the independent variables

include the indicator for cells on the shortest-distance corridor, and each of the three ge-

ography variables and their interactions with the shortest-distance corridor, entered one

at a time. The interaction effects all come out as negative, although not significant for

marshes. Column (4) enters them all together and now the coefficients on the interaction

terms become precisely estimated, all three being significantly different from zero at the

5% level, or lower. This holds also when entering GP pair fixed effects in column (5), and

with both pair and cell fixed effects in column (6); note that the direct geography effects

are dropped in column (6), as they are absorbed by the cell fixed effects. Column (7) uses

the same fixed-effects specification as in column (6), but allows standard errors to be clus-
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tered at the pair and cell level. This renders the coefficient on marshes insignificant, but

seas and mountains still come out as significant at the 5% level.

Overall, this supports the idea that these types of geography tend to push battles off

the shortest-distance corridor, on which battles would otherwise tend to be fought, the

result being a longer effective distance between the capitals.

Figure 3 illustrates how the means of the different geography variables vary between

observations (cell-GP pairs) with and without battles, both for the full sample and for

observations on the shortest-distance corridor between the belligerents’ capitals. This

shows that geography indeed differs between observations with and without battles, in

particular when we consider cell/pairs on the corridor. In other words, these types of

geography do push battles off the corridor.

4.3 Robustness

4.3.1 Alternative Corridors

Section A.2 of the Online Appendix pursues several robustness checks of the main results

from our battle analysis. First, to assess if our results are truly about corridors between

capitals we consider two alternative corridors. One runs around the territorial contours

of the Great Powers; the other between the largest non-capital cities, which we chose to

be Barcelona, Budapest, Izmir/Smyrna, Manchester, Marseilles, and Moscow (for moti-

vation of these choices see Section A.2.2). Maps of these alternative corridors for different

Great Power pairs are shown in Figures A.6 and A.7.

Both these alternative corridor measures show positive and significant correlation

with the battle indicator when added as controls to the regressions in Table 1 (see Ta-

bles A.3 to A.6). However, the coefficients on our benchmark corridor measure always

come out as larger and more significant than the other two, and similar in size to our

benchmark regressions in Table 1. This holds also when we restrict the sample to cells

close to the benchmark corridor. In other words, our findings do not seem spurious.
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4.3.2 Alternative Geography Measures

Section A.2.3 in the Online Appendix explores how the results in Table 2 change when

using some alternative geography variables, namely indicators for rivers, lakes, and high

levels of agricultural suitability, the last one based on data from Galor and Özak (2016). Of

these three, only the river indicator comes out as significant when interacted with the SD-

corridor, but with a positive sign. In other words, there is no evidence from our battle data

that rivers are obstacles—like seas, mountains, and marshes appear to be—but rather the

opposite. This is maybe not too surprising, since the effect of rivers can be theoretically

ambiguous. As discussed in Pounds (1972, , Ch. 11) and Kitamura and Lagerlöf (2020),

rivers can serve as borders between states, but also unify by facilitating transportation.

Similarly, rivers can supply water for troops on campaign, while in some cases also being

difficult to cross. For the rest of this paper, we focus our analysis on the three benchmark

variables that we feel make most sense as geographical obstacles to military mobility.

4.3.3 Further Robustness Checks

Section A.2.4 of the Online Appendix considers several other robustness checks of the

results in Table 2, e.g., adding city interactions, dropping battles close to capitals, letting

Moscow be the capital of Russia (instead of St Petersburg), dropping sea battles, using the

number of battles (rather than a battle dummy) as the dependent variable, and allowing

for spatially correlated standard errors. None of these changes alters the results much, at

least not in ways suggesting that the correlations of interest are spurious; in some cases

the results rather strengthen.

One thing that does weaken the results is measuring battle outcomes over a later pe-

riod, 1914-1945. However, this finding arguably makes sense, since advances in transport

and military technologies at some point should make geography less of an obstacle for

advancing armies. It is also consistent with how new modes of transport, such as rail-

roads and steam ships, affected the spatial distribution of economic activity (see, e.g.,

Delventhal, 2018; Ellingsen, 2025; Nagy, 2023).
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5 City Data Analysis

The analysis so far suggests that certain types of geography tend to push battles off the

shortest-distance corridor between the belligerents’ capitals. Our suggested interpreta-

tion is that these types of geography increase the effective military distance between the

capitals.

This need not be interpreted too literally. We do not have in mind any specific military

campaign that aimed for a particular capital, and detoured around mountains, seas, or

marches. Such examples may exist, but we imagine a more long-run and indirect chain of

causation. For example, armies may aim for certain non-capital cities or locations whose

military-strategic relevance stem from a belligerent’s capital being easier to reach from

there, in turn making them more important to defend, and thus a more likely to become

battle locations.

In this section, we look at city data for patterns that are consistent with the idea that ge-

ography affects the effective distances between capitals. First, we examine if the geodesic

distances between pairs of capitals tend be shorter when the geography between them

is more separating. We would expect this to be the case, because a more separating ter-

rain should afford capitals to be closer. Put another way, terrain that is easier to traverse

requires longer distances between capitals for the states’ long-run survival.

Second, we ask if pairs of locations (cities) are more likely to belong to different states

when they have a more separating terrain between them. This is based on the same

reasoning as above, since shorter distances between capitals should imply smaller states.

Section 6 below discusses a theoretical framework that formalizes this intuition.

5.1 Geodesic Distances Between Capitals

To examine geodesic distances between capitals, we use data from Bosker et al. (2013), and

look at pairs of capital cities in 1800. We also add the Russian capital of St Petersburg, to

get a little closer to our battle data, but results are not sensitive to this inclusion.

We then run a few regressions where the dependent variable is the geodesic distance
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between the capitals, or the length of the corridor, denoted Li,j. The three independent

variables of interest correspond to those used in our earlier battle analysis: the fraction

mountain (with elevation above 800 m), H800,i,j; the fraction sea Si,j; and the fraction

marsh, Mi,j. These are all measured as fractions across a corridor’s total area (the 50 km

buffer zones around then shortest-distance line). The regression equation can be written:

Li,j = δSSi,j + δH,800H800,i,j + δMMi,j + ηi + ηj + εi,j, (4)

where ηi and ηj denote city fixed effects, one for each of the capital cities in the pair.8

These fixed effects absorb anything that directly affects distances for any particular capital

and/or its location, and follows the approach of Spolaore and Wacziarg (2006) (see also

Spolaore and Wacziarg, 2009, Footnote 42).

We expect the estimates of the different δ’s to be negative. Columns (1) and (3) in

Table 3 present results from two regressions that bear this out: larger fractions sea or

marshland along the corridors are associated with shorter geodesic distances, with the

estimated coefficients being negative and highly significant. This suggests that a more

separating terrain tends to pull the capitals closer to each other.

The coefficient on the fraction mountain in column (2) carries the wrong sign, and

also comes out as highly significant. However, when all three geography variables enter

together in column (4), the coefficient on the fraction mountain shrinks in absolute mag-

nitude and becomes less precisely estimated, while the corresponding coefficients on the

fractions sea and marshland become larger in absolute terms.

Moreover, the negative estimate of the mountain coefficient is not robust. Column (5)

drops those pairs where both cities were capitals only in 1800, and became non-capital

cities in either 1900, 2000, or in recent modern times (according to Euratlas and GADM,

respectively; see below). These cities are Firenze, Genoa, Milano, Naples, and Turin in

modern Italy and Munich in modern Germany; note that Italy and Germany did not exist

as states in 1800. As seen in column (5), when dropping these pairs, thus shrinking the

8More precisely, let ηiϕi + ηjϕj be two terms in the sum ∑N
k=1 ηkϕk, where N is the number of capitals (or

number of cities), and ηk is the coefficient on the dummy variable for capital k, denoted ϕk. This dummy is

such that ϕk = 1 if i = k or j = k, and ϕk = 0 otherwise. The two terms (and the whole sum) thus equal

ηiϕi + ηjϕj = ηi + ηj for capital cities i and j.
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sample by about 4%, the coefficient on the fraction mountain is no longer significantly

different from zero.

Rather than looking at each type of geography in isolation we can consider a compos-

ite measure that we call a Separatedness Index, constructed as this weighted average of the

three geography variables:

.162 × Si,j + .166 × H800,i,j + .13 × Mi,j. (5)

The weights are given by the estimated coefficients on the interaction terms in column (5)

of Table 2. These capture to what degree the presence of each type of geography tends to

push battles off the shortest distance corridor, thus extending the effective distance.9 The

coefficient on this index is negative and significant in column (6) of Table 3, consistent

with our theory: capitals tend to be geodesically closer to each other when they have

more separating geography between them.

Finally, columns (7) and (8) present result based on the same specifications as in (4)

and (6), but with standard errors clustered on pairs of 5 × 5 degree cells.10 The estimates

stay significant.

In sum, a more separating geography seems to be associated with shorter geodesic

distances between pairs of capitals.

5.1.1 Robustness and Mechanisms

In Section A.3 of the Online Appendix we present results that inform us further about the

mechanisms involved. First, we consider pairs of non-capital cities, without finding any

negative correlations like those which we find for pairs of capitals in Table 3. If anything,

the correlations for non-capitals tend to be positive. In other words, there is something

specific about capitals that makes them different from other cities.

We also restrict the sample to pairs of particularly large cities, as measured by popula-

tion. This could be of interest because capitals tend to be larger than other cities, suggest-

9Since the weights in (5) are similar in size an equal-weighted average produces similar results.
10That is, we divide the map into cells centered on degrees latitude and longitude divisible by 5. Each

pair of capitals (or cities) belongs to one unique cell pair and we cluster the standard errors on such cell

pairs.
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ing that size itself might drive these patterns.11 Again, we find no significant relationship

between distances and separatedness for large non-capitals, while we do find it for large

capitals.

We also explore some alternative interpretations of what constitutes a capital, and thus

the type of sovereign state of which it is the center of power, by restricting the sample

to capitals of Great Powers only, considering two different definitions. This shrinks the

sample a great deal, but we still find negative, and mostly significant, correlations.

Overall, we believe this lends support to our suggested interpretation about why a

separating geography leads to shorter distances between capitals: it is more important

for capitals than for other cities to be out of reach of competing powers’ armies; therefore,

a more separating terrain, that is harder to cross, affords shorter geodesic distances.

5.2 Same-State Outcomes

Next we explore if pairs of cities are more likely to belong to different states when they

have a more separating terrain between them. We could do this exercise for arbitrary pairs

of locations, e.g., cells, but because state territories have a more meaningful interpretation

in regions that are more densely populated (or populated at all), we choose pairs of cities.

To that end, we again use the city data from Bosker et al. (2013), and the year 1800

CE, but consider all cities with a population above 5,000 (i.e., not only capitals). We want

to know if these were more likely to belong to different states if the geography between

them was more separating controlling for the geodesic distance between them.

As in the analysis of capital pairs above, we use the geo-coordinates of cities to find

the shortest-distance line between city pairs and measure the same types of geography

as in our earlier analysis across 50 km buffer zones from the shortest-distance line. As

before, we refer to these as corridors between cities.

Also in line with the capital-pairs analysis, we focus on 1800 CE, the latest year for

which Bosker et al. (2013) report data. Same-state outcomes are based on Euratlas borders

11Larger cities may be more likely to become capitals, and capitals may also grow faster than other cities.

For an example of the latter, see, e.g., Kulka and Smith (2024), who finds that US cities grow faster when

becoming county seats.
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of independent states in 1900, a century after we measure cities. This is when the number

of states in Europe was at its lowest (see, e.g., Gancia et al., 2022, Table 1), and also a

point in time when the states that we considered in our battle analysis formally existed,

in particular Italy and Germany.

Excluding cities outside Euratlas state territories in 1900, this gives us 241,860 city

pairs.

Let the outcome variable be an indicator denoted Ci,j, taking the value one if the two

cities i and j belonged to the same state (in 1900, the year when we measure outcomes),

and zero otherwise. Using the same notation as earlier for the remaining variables, we

can now write the regression equation as

Ci,j = λLLi,j + λSSi,j + λH,800H800,i,j + λMMi,j + ηi + ηj + εi,j, (6)

where the terms ηi and ηj represent the same type of fixed effects as in (4), although refer-

ring to all cities (not only capitals). These absorb anything that varies at the city level.

We are interested in the estimates of the different λ’s, which we all expect to carry

negative signs. That is, any two cities should be less likely to belong to the same state if

they are farther from each other and if they are more separated by seas, mountains, or

marshes. Put another way, they should be more likely to belong to the same state if they

lie close to each other, with flat, non-marshy dry land between them.

Table 4 presents least-squares estimates from various specifications similar to that in

(6), letting the different geography variables enter both one by one and together.

The signs come out the expected way, and highly significant, when all geography con-

trols enter together in column (4). The same is true when entering the fraction sea or the

fraction mountain separately in columns (1) and (2). The significant and positive effect

when entering the fraction marshes separately in column (3) is an anomaly, but (as men-

tioned) this result reverses when entering all geography variables together in column (4).

We also see that the inclusion of the fraction marshes increases the size of the estimated

coefficients on the other two geography variables, suggesting that these variables capture

different dimensions of the separating effects of geography. Notably, the marshes vari-

able has a negative correlation with the other two, as swampy areas tend to be located on
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land and at low elevation.

Column (5) uses the Separatedness Index, defined in (5), in lieu of the three geography

variables. The index comes out as negative and significant at the 1% level.

Columns (6) and (7) cluster the standard errors on cell pairs (same as in Table 3), with

similar results as in columns (4) and (5), except that the fraction marshes comes out as

significant only at the 10% level in column (6).

Section A.4 of the Online Appendix makes several robustness checks of the results in

Table 4. First, we explore if the results hinge on using 1900 as the outcome year, a point

in time when Europe was at its most unified. We find that they are not. Letting the same-

state dummy be defined on state borders in later years than 1900 the results are almost

identical.

We also consider pairs of cities that existed earlier than 1800. This could be important

if we believe that some cities emerged simultaneously and/or endogenously with states.

However, when using pairs of cities that existed in 800 CE already—preceding modern

European state formation by a few centuries, and the earliest year for which Bosker et al.

(2013) have data—the results are similar to those in Table 4.

5.2.1 Predicted Great Power Territories

We can use the same-state regressions to make predictions about state territories. To keep

close to our city-level analysis, we here think of the territory of a Great Power as the set of

cities that are most likely to belong to the same state as its capital: London, Paris, Madrid,

Berlin, Vienna and Istanbul. We ignore Russia and St Petersburg, since Bosker et al. (2013)

do not have data on Russian cities. We also arbitrarily assume that cities belong to none

of these Great Powers if the highest predicted probability across all of them falls below

0.15; see further discussion below.

The results are shown in the map in Figure 4, where actual state borders are also indi-

cated. We can make several observations. First, the predicted Great Power territories are

not circular or oval, as we would expect if only geodesic distance mattered; deviations

from such shapes illustrate the role of geography for these predictions.

Second, the fits are imperfect in ways that are insightful. For example, the Ottoman
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Empire is much larger than its actual territory in 1900, stretching into the Balkans and

Sicily, but that fit becomes better if we use the actual territory in 1800 instead; see Figure

A.10 in the Online Appendix. This may also speak to why modern Turkey’s capital is in

Ankara.

Another example is the prediction for France, which does not reach the south, or the

Mediterranean coast, of the country as it looked in 1900 (or today). However, some of

these areas (e.g., Nice and the Duchy of Savoy) were not always part of France before

then. Note also that Monaco remains an independent state to this day.

Third, the cities/regions that are predicted to not belong to any Great Power are lo-

cated in regions stretching from the Benelux countries, across the Alps, and into Italy.

This is where we see many small states in 1900, and often to this day; note that Italy was

not unified until 1861. As mentioned, we set 0.15 as the predicted probability threshold

below which cities are assumed to not belong to any Great Power. This number is arbi-

trary, but we chose it to allow the map to match these broad patterns. For comparison,

Figures A.11 and A.12 in the Online Appendix show the results when instead using 0.1

and 0.2 as thresholds, producing a worse match with these broad empirical patterns.

Section A.4.1 in the Online Appendix also explores quantitatively how well the pre-

dicted territories compare to the actual, according to what we call the overlap ratio. This

ranges from zero, when there is no overlap between predicted and actual territories, to

one, when there is perfect overlap. In our predictions, this overlap ratio ranges from .46

for Austria-Hungary to .96 for England.

Interestingly, if we change the capitals to the alternative cities used in Section 4.3.1,

considering each Great Power at a time and keeping the capitals of the other Great Pow-

ers fixed, then the overlap ratios tend to fall. The one exception is Austria-Hungary, where

the overlap ratio is higher with Budapest as capital instead of Vienna. Although the pic-

ture is somewhat mixed, we think this is suggestive of a pattern where Great Power cap-

itals tend to be positioned such that they are well connected to their own territories, but

not those of their competitors. For example, when using Marseilles as capital of France

instead of Paris, its predicted territory shows little semblance to its actual (see Online

Appendix Figure A.14).
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6 Theoretical Framework

We have already discussed our preferred interpretation of our findings. To make this

a little more concrete, Section A.1 of the Online Appendix suggests a simple but useful

model that can help us think about the underlying mechanics.

In the model, the effective distance between two locations depends both on how far

they are from each other in a geodesic sense and on the terrain between them, which

varies across space. Terrain that is more separating (i.e., harder to cross) produces a

greater effective distance for a given geodesic distance.

States (or their elites) place their capitals to maximize the effective distance to their

closest neighbors’ capitals. Assuming that borders are located geodesically half-way be-

tween capitals, the model then gives us state territories. Given these territories, we as-

sume that each state has one non-capital city located at the point within its territory that

has the lowest separatedness, meant to capture the broad idea that non-capital cities gain

from being well connected. (Alternatively, they may locate where land productivity is

high, associated with a less separating terrain.)

We then simulate the model 5,000 times, each with a different randomly generated

geography. We find that capitals are always located geodesically closer where the terrain

is more separating, while the same does not hold for non-capital cities. (See Figure A.5 in

the Online Appendix.) Intuitively, for non-capital cities two effects pull in opposite direc-

tions: because each state has one non-capital city, there are more such cities where there

are more states, i.e., where the terrain is more separating; on the other hand, within states,

non-capitals locate where separatedness is low. The contrasting patterns for capitals and

non-capitals are consistent with the findings discussed in Section 5.1.

A corollary finding to capitals being geodesically closer where the terrain is more sep-

arating, and states’ territorial borders being located between capitals, is that any two

locations are less likely to belong to the same state in places that have more separating

terrain. This matches our findings in Section 5.2.
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7 Conclusion

While cities tend to locate where they are well connected for the purpose of trade, they

also need to stay safe from enemies. This is particularly true for capitals.

In this paper we use this insight, together with data on battles and cities in Europe, to

explore how geography has influenced the locations of battles and capitals and thereby

the territorial size and shape of states. The focus is on the Great Power era.

We first document that capitals appear to have been (directly or indirectly) targeted in

military conflicts between European Great Powers. To that end, we use data from Kita-

mura (2021) on geo-coded battles to document that these tend to occur within shortest-

distance corridors running between the capitals of the belligerent powers. However, we

also show that battles tend to deviate from that corridor where it is intercepted by certain

types of geography, specifically seas, mountains, and marshes. These results are robust

to various controls, sample restrictions, econometric specifications, and alternative defi-

nitions of variables. Our interpretation is that these types of geography have served as

obstacles for armies, and thus tended to make capitals safer. In other words, they tend to

extend the effective military distances between capitals for a given geodesic distance.

We argue that one implication of this finding is that areas with more separating terrain

should have more and smaller states, with capitals located closer to each other. To test this

we use city data from Bosker et al. (2013), and find that capitals tend to be geodesically

closer to each other when they have more of these types of geography between them, in

particular more sea and marshland, with the results for mountains being more mixed. By

contrast, there is no similar pattern for pairs on non-capital cities, but rather the opposite.

We also examine pairs of all types of cities (capitals and non-capitals) and find that,

conditional on the geodesic distance between them, they are more likely to belong to

different states when the geography between them is more separating, as measured by

the same three types of geography.

To illustrate this last result, we also construct maps showing Great Power territories

as predicted by geography and the location of their capitals. The maps show striking

resemblance to the actual state territories, with some interesting exceptions.
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As a final note, not all capitals and state territories in Europe are the same today as

they were centuries ago, but most arguably have deep historical roots. In that sense, we

believe our study is relevant for understanding the political geography of Europe to this

day.
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A Online Appendix
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A.1 A Model

This section proposes a very simple spatial model to help interpret some of our empirical

results. Locations are represented by points on a unit-length circle and indexed by x ∈
[0, 1]. To facilitate graphical illustrations, we project that circle to the unit interval, letting

locations 0 and 1 be the same (i.e., where the circle closes).

We let “separatedness”at location x be denoted by a differentiable function g(x). Em-

pirically, a high g(x) would correspond to more mountains, sea, and/or marshland at

x.

There are N states indexed by i ∈ {1, 2, ..., N}. State i has a capital at location λi. (Each

state also has one non-capital city; see below.)

Since the space is circular, the neighbor to the left of state 1 is state N, and, vice versa,

the neighbor to the right of state N is state 1.

We distinguish between geodesic and effective distances. More precisely, consider two

states, i and i − 1, where λi − λi−1 represents the geodesic distance between their capitals.

We let Ei−1,i denote the corresponding effective distance, given by

Ei−1,i =
∫ λi

λi−1

g(x)dx = G(λi)− G(λi−1), (A.1)

where G(x) =
∫ x

0 g(z)dz and G′(x) = g(x).

In other words, for a given geodesic distance between two capitals the effective dis-

tance is greater when the geography between them, as measured by the levels of g(x), is

more separating. Figure A.1 provides an illustration.

The next section describes how states optimally locate their capitals, which is the only

decision made in this model, and the resulting equilibrium. Once we have determined

the equilibrium distribution of capitals, borders between states are assumed to be located

geodesically halfway between capitals, thus defining state territories; see Section A.1.3

below.

Each state’s (single) non-capital city is then assumed to be located at the point within

its territory that has the lowest separatedness. This is not modelled as a choice but moti-

vated with some further discussion in Section A.1.4 below.
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A.1.1 The Location of Capitals

Each state is assumed to locate its capital to maximize the product of the effective dis-

tances to its neighboring capitals. Although we do not model conflict explicitly, the idea

is that states want to keep capitals secure from attacks by hostile neighbors. We write the

objective function for state i as:

πi = Ei−1,i × Ei,i+1. (A.2)

Because this is a coordination game, where each capital’s optimal location depends

on where its neighbors’ capitals are located, there are multiple equilibria. To select one

equilibrium, we need to arbitrarily fix the location for one of the capitals. Here we let

state N’s capital be located at point 1, which (recall) is the same as point 0. This will later

be verified to be optimal for state N in equilibrium.

Consider now a state i ∈ {2, ..., N − 1}, which sets λi to maximize (A.2), subject to

(A.1), and (A.1) forwarded to Ei,i+1 = G(λi+1)− G(λi), taking as given the locations of

the neighboring states’ capitals, λi−1 and λi+1.

The first-order condition can be seen to imply that the effective distances are equal-

ized: Ei−1,i = Ei,i+1.12 Using (A.1), this can be written

G(λi)− G(λi−1) = G(λi+1)− G(λi). (A.3)

This hints at the main mechanism in this model: where g(x) is high, and G(x) steep, the

geodesic distance between capitals is shorter, since a given distance between λi and λi−1

is associated with a greater gap between G(λi) and G(λi−1). That is, a more separating

geography affords a shorter geodesic distance between capitals.

Note also that the effective distance between state 1 and state N (and vice versa) equals

G(λ1): state 1’s leftward neighbor is state N with its capital at location 0 (same as location

1), and G(0) = 0. Likewise, the optimality condition for state 1—corresponding to that in

(A.3)—becomes G(λ1) = G(λ2)− G(λ1).

12The first-order condition can be written G′(λi)/Ei−1,i = G′(λi)/Ei,i+1, which simplifies to Ei−1,i =

Ei,i+1.
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A.1.2 Equilibrium

As mentioned, the capital of the Nth state is set where the circle closes: at location 1,

which (recall) is the same location as 0. We can now state the following.

Proposition 1. Assume that λN = 1. Then the equilibrium location for the capital of state i is

defined from

G(λi) =
iG(1)

N
. (A.4)

Proof. Define the effective distance between the capital of state i and the capital of its

neighbor to the left as

χi = G(λi)− G(λi−1), (A.5)

with χ1 = G(λ1), since (recall) state 1’s neighbor to the left (state N) has its capital at

0 (same as 1). We know from (A.3) that χi equals the same constant for all states i ∈
{2, ..., N − 1}. Call that constant χ.

For state 1, we also have χ1 = G(λ1) = χ, since it equalizes the effective distance

from its capital to both its neighbors’ capitals, and the effective distance to its rightward

neighbor’s capital equals G(λ2)− G(λ1) = χ2 = χ.

The same holds for state N: the effective distances to the capitals of its neighbors to

the right and left must equalize for its capital location to be chosen optimally, so χN must

equal the effective distance between the capitals of states 1 and N, i.e., χN = χ1 = χ.

Thus, χi = χ for all states i ∈ {1, ..., N}, implying that ∑N
i=1 χi = χN = G(1) [recalling

that G(0) =
∫ 0

0 g(z)dz = 0], which gives

χ =
G(1)

N
. (A.6)

We now see that G(λ1) = χ1 = χ = G(1)/N. Then (A.5) says that G(λ2) = G(1)/N +

G(λ1) = 2G(1)/N; G(λ3) = 3G(1)/N; and so on, with G(λN) = NG(1)/N = G(1). This

implies the solution in (A.4). ■

Intuitively, if the terrain is constant, meaning g(x) is constant and G(x) linear, the

distances will be the same between any two capitals. That is, (A.4) shows that, when

G(λi) is linear, then λi − λi−1 becomes the same for all i. The reason geodesic distances
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vary between different pairs of capitals in this model is because g(x), and thus G(x), vary

across space.

Note also that, because the effective distances between all capitals equalize in equilib-

rium, λN = 1 is optimal for state N. That is, the effective distance between 0 and λ1 is

the same as that between λN−1 and 1. State 1 also locates its capital optimally, since (A.4)

satisfies G(λ1) = G(λ2)− G(λ1). Similarly for the remaining states i ∈ {2, ..., N − 1}, the

optimality condition in (A.3) is implied by (A.4).

One simple case that allows us to solve for λi analytically is when g(x) = x, and

G(x) = x2/2. Then we see that G(λi) = λ2
i /2 = iG(1)/N = i/(2N). Disregarding the

negative root (for obvious reasons) it follows that

λi =

√
i
N

. (A.7)

A.1.3 Territories

To define state territories, we let borders be located at the geodesic halfway point between

capital. That is, the left border of state i is halfway between λi and λi−1 at (λi + λi−1) /2;

the right border of the same state is located at (λi+1 + λi) /2.

A.1.4 The Location of Non-Capital Cities

Given state territories, we assume that the single non-capital city of each state is lo-

cated at the point within its territory that has the lowest separatedness, i.e., at the x ∈
[λi+λi−1

2 , λi+1+λi
2 ] where g(x) is minimized. This could be at one of the borders, λi+λi−1

2 or
λi+1+λi

2 , or at an interior minimum point within that territory.

The broad idea we want to capture is that non-capital cities benefit from being well

connected locally, implying low g(x). Alternatively, we could assume that non-capital

cities tend to emerge at locations with abundant natural resources and/or high agricul-

tural productivity. If this means less separating geography (fewer seas, mountains, and

marshes), then such features should be inversely related to g(x).

The assumption of one non-capital city per state may be interpreted as each state con-

stituting a free-trade area with a single trade hub. This assumption is not necessary for
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the model to generate the results we are after, but rather works against us, since it implies

more non-capital cities where there are more states, and thus where g(x) is high. If larger

territorial states had more non-capital cities than smaller ones, then we would see more

of them where g(x) is low.

A.1.5 Simulations

Functional Forms

With an assumption about N and a functional form for g(x) we can determine the equi-

librium location of each capital on the circle. Together all capital locations then define

territories and non-capital city locations.

For some parametric cases we can easily find analytical solutions, as when g(x) = x

mentioned just above; see (A.7). With richer functional forms for g(x) it is easiest to use

numerical illustrations.

Figure A.2 considers the example where g(x) = x2(1 − x)2(x − 1/4)2(x − 2/3)2 and

N = 10. Panel A plots g(x) against x and shows three other items on the horizontal

(x) axis: (i) the equilibrium locations of the capitals; (ii) the resulting territorial borders

located geodesically halfway between capitals; and (iii) the location of each state’s single

non-capital city at the point where g(x) is minimized within its territory.

In Panel B we consider all different pairs of capitals, which comes to N(N − 1)/2 = 45

pairs in this case, with N = 10. Across these 45 pairs, we plot the geodesic distance

between the capitals in each pair (as measured on the circle and thus between 0 and 1/2)

against the average level of separatedness, g(x), between them (here normalized to fall

between 0 and 1). While it is not obvious to see with only 45 observations, the relationship

in Panel B of Figure A.2 is negative with a correlation coefficient of −.62.

In Panel C we do the same thing as in Panel B, but for non-capital cities. Here the

correlation coefficient comes out as −.12, which is closer to zero than in Panel B. The

correlations in Panels B and C of Figure A.2 refer to one functional for g(x) and one

assumption about N, but as we shall see soon this tends to be a more systematic pattern.

Finally, we explore if a more separating geography also results in more state fragmen-
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tation. In Panel D, we consider multiple pairs of locations (not only capitals or non-capital

cities), all at the same fixed distance, here set to 0.1, i.e., 1/10 of the unit circle. The two

bar graphs show how average separatedness between the two locations in each pair dif-

fers between those pairs which are located in the same state and those which are split

between different states (i.e., located on different sides of a border, possibly more than

one border). As seen, separatedness tends to be lower for pairs of locations in the same

state, compared to those in different states. While this may seem obvious from the fact

that borders tend to cluster where g(x) is high (see Panel A), note that this result holds

when considering a fixed distance between the locations, which makes it comparable to

our regression results, where we control for geodesic distances.

As noted, the results in Figure A.2 refer to one functional for g(x) and one assumption

about N. In a sense, it also hinges on our assumption that the capital of state N to be

located ay point 1 (the same as point 0), but this is mirrored in the assumed shape of g(x),

which we can shift arbitrarily across the [0, 1] space.

Figure A.3 explores a geography like that in Figure A.2, but inverted, meaning that

the minimum points in A.2 become maximum points in Figure A.3, and vice versa. In

other words, we multiply by minus one and add a constant to make g(x) ≥ 0 for all

x ∈ [0, 1]. Like before, we assume that the capital of state 1 is located at x = 0 (and

x = 1), which is here a (local) maximum point, and still consider N = 10 states. The

patterns across all panels is qualitatively the same as in Figure A.2. Most importantly, the

correlation coefficients in Panel B and C are here −.44 and .14, respectively. That is, the

correlation for capital pairs is negative while that for non-capital city pairs is larger, here

even positive.

Random Geographies

As mentioned, the functional forms used for g(x) in Figures A.2 and A.3 are arbitrary.

How consistent are the differences in correlations between separatedness and geodesic

distance for pairs of capitals compared to pairs of non-capitals? To obtain a more com-

plete picture, we next consider randomly generated geographies, meaning that g(x) is

produced through a random walk. We let g(0) = 0 and then generate values for g(x) at
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discrete intervals using g(x + .001) = g(x) + .01r(x), where r(x) is a random draw from

a standard normal distribution with zero mean and standard deviation of one. We then

add a constant so that it g(x) ≥ 0 holds everywhere. The outcome for one such random

geography is shown in Figure A.4. Like with the examples in Figures A.2 and A.3, we can

visually assess that the correlations are negative for capitals in Panel B and more positive

or zero for non-capitals in Panel C.

We can then do a Monte Carlo simulation, where we repeat the same exercise 5,000

times, saving the two correlation coefficients of interest for each randomized geography.

The upshot is two overlapping histograms for the correlation coefficients: one referring

to pairs of capitals and the other to pairs of non-capitals. These are shown in Figure A.5.

The correlation across pairs of capitals is always negative, while those for non-capital

cities can be positive or negative, with some mass above zero. This qualitatively matches

the empirical results. More separatedness tends to be associated with a shorter geodesic

distances between pairs of capitals, but there is no similar robust pattern for pairs of non-

capitals.

A.1.6 Possible Extensions

We could make the model much more realistic by allowing for, e.g., state heterogeneity, or

an endogenous number of states. However, this need not affect any of the specific mech-

anisms that we are after here. For example, if we let states care about their territorial size,

that would not change anything. With borders located geodesically half-way between

capitals, the territory of state i becomes (λi−1 + λi+1)/2, which does not depend on λi.

A.2 Battle Data Analysis: Robustness and Further Exploration

A.2.1 Summary Statistics

Table A.1 presents summary statistics for some of the variables used in the battle data

analysis. For the battle and SD corridor indicators, we show the statistics for the full set

of cell and GP pairs. For the geography variables, we consider only cells, since these do

not vary across GP pairs. For comparison, we also show the same statistics for land cells.
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Some of the geography variables not used in the benchmark analysis are discussed in

Section A.2.3 below.

A.2.2 Alternative Corridors

The benchmark analysis considers corridors between Great Power capitals. Here we ex-

amine how the results change with completely different corridors. We consider two al-

ternatives: (1) corridors around the territorial borders, or contours, of the Great Powers

involved, what we call contour corridors; and (2) corridors around shortest-distance lines

that connect the largest non-capital cities, which we label non-capital corridors. In both

cases, we let the corridors be 50 km wide, as we did for our benchmark measure. These

variables take the value one for cells intersected by the alternative corridor associated

with each respective Great Power pair, and zero otherwise. See maps in Figures A.6 and

A.7.

Contour Corridors

The contour corridors are based on maps for 1900 from Euratlas (Nüssli, 2010). We choose

the year 1900 in part because Europe had the smallest number of states around then, and

on average the territorially largest Great Powers. We also want borders to be a meaning-

ful measure of the territorial reach of state capacity, which may have been more limited in

earlier centuries. We here only consider contours around the core segments of the respec-

tive states, ignoring colonies and overseas dominions. For example, we ignore Britain’s

holdings in Egypt. Note also from Figure A.6 that these corridors can cover almost the

whole country (see, e.g., Great Britain).

Non-Capital Corridors

We want the non-capital corridors to run between the largest non-capital cities of each

Great Power. Which cities to choose is not always obvious, since both city rankings and

state borders can change over time, and how they change depends on which time period

we consider.
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To fix ideas, we focus on the period from 1800, the last year for which Bosker et al.

(2013) has city population data, up until today. Given this time period, the choice of city

is relatively straightforward in most cases. Great Britain’s largest city after London was

Manchester in 1800, according to Bosker et al. (2013), and it remains second largest in the

United Kingdom today, according to Wikipedia. Using similar criteria, we choose Izmir

(or Smyrna) for the Ottoman Empire (Ankara was much smaller up until it became the

capital of Turkey) and Hamburg for Germany.

In the case of France, we choose Marseille, which was slightly smaller than Lyon in

1800, but is the second largest city after Paris today.

For Austria-Hungary, we choose Budapest. Bosker et al. (2013) report population data

for the two cities Buda and Pest separately, with a total population of 50,000 in 1800. Graz

and Debrecen (or Debreczin) are the closest runner-ups among cities located in today’s

Austria or Hungary; neither had a population exceeding that of Budapest in 1800 or today,

according to Bosker et al. (2013) and Wikipedia, respectively.

For Spain, we choose Barcelona, which was the largest city in Spain in 1800 according

to Bosker et al. (2013), at least if we exclude the capital Madrid. Although not part of

Spain through much of its existence, Barcelona was absorbed into Spain in 1714 with the

fall of the independent Principality of Catalonia.

For Russia, we do not have any population data from Bosker et al. (2013), but given

that our benchmark analysis uses St Petersburg as capital, it makes sense to choose Moscow

as our largest non-capital city. This is the current capital and also largest city of Russia.

Results With Alternative Corridors

Table A.2 shows, for each Great Power, the correlation between our benchmark mea-

sure (i.e., the shortest-distance corridor between capitals), and our two alternative corri-

dor indicators. For some pairs, the correlations are relatively large, meaning the corri-

dors overlap a great deal. This is the case for, e.g., Austria-Germany, where the alterna-

tive Hamburg-Budapest corridor has a correlation coefficient of .57 with the benchmark

Berlin-Vienna corridor. For other Great Power pairs, the capital/non-capital corridor cor-

relations are much smaller or even negative. By comparison, the contour corridors show
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low but positive correlations with the benchmark capital corridors, and these are rela-

tively stable across Great Power pairs.

Table A.3 presents results from the same regressions as in Table 1 when adding the

contour corridor indicator as control. Table A.4 instead adds the non-capital corridor as

control and Table A.5 adds both. In all these regressions, the alternative corridor mea-

sures come out as positive and significant, which is perhaps not too surprising, since

both tend to be positively correlated with our benchmark measure (cf. Table A.2). More

importantly, the coefficients on our benchmark corridor measure stays positive and sig-

nificant and comes out as larger and more significant than the other two. This holds in all

specifications. There is little to suggest that our main findings are due to battles tending

to be fought in adjacent or overlapping regions, such as the territorial peripheries of the

Great Powers, rather than in the corridors between the actual capitals. In other words,

our results do not appear to be spurious.

The results in columns (5)-(6) in Table A.4 are particularly interesting, just like the

corresponding columns in Table 1. These columns restrict the samples to cells located

within 300 km from the shortest-distance lines between capitals. In these specifications,

the alternative measures come out as (mostly) insignificant and smaller than the bench-

mark corridor. That is, the difference in results is particularly noticeable locally around

the corridors between capitals.

Of course, this 300 km sample restriction is itself based on the benchmark corridor

measure. Table A.6 examines alternative sample restrictions as well. Column (1) first

presents results when regressing the battle indicator on the benchmark corridor with both

cell and GP pair fixed effects and using the full sample. Column (2) then restricts the

sample to cells within 300 km of the benchmark corridors. The benchmark corridor comes

out as significant in both specifications. This repeats what we already saw in Table 1.

Next, columns (3) and (4) of Table A.6 do the same for the non-capital corridor. Note

that the sample restriction in column (4) is now based on cells within 300 km of the non-

capital corridor. We obtain a positive coefficient on the non-capital corridor in column

(4), but it is smaller and less significant than that for the capital corridor in column (2).

In columns (5) and (6) we add the benchmark corridor measure as control to the same
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specifications as in (3) and (4). That is, we let the sample restriction in column (6) be

cells within 300 km of the non-capital corridor. We again see the benchmark measure

doing marginally better. Finally, column (7) restricts the sample to cells within 300 km

of both corridors. This shrinks the sample to just 792 observations, and with cell and

GP pair fixed effects we do not get any significant estimates, but it is worth noting that

the point estimate on the benchmark corridor is positive, while that on the non-capital

corridor is negative. In sum, the results that we found locally around the benchmark

capital corridors are not specific to that particular sample restriction. Regardless of how

we choose the specifications and sample restrictions, the benchmark measure tends to

always perform better.

A.2.3 Alternative Geography Measures

The main analysis considered three types of geography—seas, mountains, and marshland—

all of which we argued should have hindered military transport. Here we consider three

other geography variables, namely indicators for the presence of rivers and lakes, and

high levels of the Caloric Suitability Index (CSI). The last one of these is from Galor

and Özak (2016), with our indicator taking the value one for cells in the 90th percentile

of CSI across all cells in our dataset. Data on lakes and rivers are from Natural Earth

(www.natural-earthdata.com). We here use indicators for any lake or river entering the

cell. Some descriptive statistics are presented in Table A.1; note that almost 40% of all

cells, and about 70% of all land cells, are intersected by a river.

In Table A.7 we present results from a few regressions where we interact geography

with the SD-corridor, similar to those in Table 2, but here including our three alternative

geography measures as well as the three benchmark ones, both separately and together.

Of the three alternative measures, the only significant results refer to the river indicator,

which comes out as positive and significant. That is, rivers do not push battles off the

shortest-distance corridor, but rather the opposite. The results for our benchmark mea-

sures do not change much, although the sea indicator comes out as insignificant in column

(8), where we cluster standard errors. This may have to do with the majority of land cells

having rivers, making that variable pick up some of the variation otherwise captured by
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the sea indicator. As discussed in the main text, the existing literature suggest that the

effect of rivers can be ambiguous.

A.2.4 Other Robustness Checks

Tables A.8 to A.16 explore further variations on the regressions in Table 2, meant to ad-

dress some remaining concerns.

In the main analysis we defined cells with mean elevation above 800 meters as moun-

tain cells. Table A.8 considers alternative definitions, using the same specifications as in

column (6) of Table 2. The largest positive, and most significant, coefficients are found

when using the 800-meter threshold. For very low levels of elevation the coefficients turn

negative, which is due to cells at low elevation often having marshes, or being (fully or

partially) covered by sea.

Table A.9 considers the same specifications as in Table 2, but uses only land battles

when defining which cells are battle cells, dropping naval battles. This renders the neg-

ative interaction effect from sea cells more significant, for reasons that are rather obvious

and not interesting. More importantly, the negative interaction effects for mountains and

marshes stay robust.

The negative effect of the SD-distance corridor, and its interactions with geography,

could be driven by battles happening close to the capitals between which the corridor

spans. To explore this possibility, Table A.10 drops those cells that are closer than 200 km

from any of the relevant capitals for each pair. The results are largely robust to this chance,

with negative interaction effects throughout, slightly less significant for sea interactions

and more significant for marshes, when compared to Table 2.

Not every military incursion was directly aimed at capturing the opponent’s capital.

The perhaps most well-known example is the French invasion of Russia in 1812. Even

though the Russian capital was St Petersburg at the time, Napoleon actually advanced

towards Moscow. Table A.11 presents regressions results similar to those in Table 2, keep-

ing the battle indicator unchanged but assigning Moscow as the Russian capital instead

of St Petersburg when constructing the corridor variable. The results change very little

compared to those in Table 2.
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In the benchmark analysis we disregarded Great Power pairs that fought fewer than

10 battles. We can instead consider the full set of 21 pairs, including those which fought

no battles at all, which expands the dataset to 30,450 observations (i.e., 1450 cells and 21

pairs). For pairs involving Prussia/Germany or Russia, we let Berlin and St Petersburg

be capitals. Table A.12 shows the results. Except for the coefficient on the interaction

between the SD corridor and the marshland indicator becoming slightly less precisely

estimated, the results are otherwise similar to those in Table 2.

Table A.13 presents the same regressions as in Table 2 but lets the dependent vari-

able be the number of battles in the cell (between the relevant pair and from 1525 to

1913), rather than just a battle indicator. The results are robust to this change, and in fact

strengthen for marshes in column (7).

Table A.14 allows for spatially adjusted standard errors and declining weights, apply-

ing the acreg command in Stata and the Bartlett option from Colella et al. (2023). The spec-

ifications are the same as in column (6) of Table 2, changing the distance cut-off within

which standard errors are allowed to be correlated. The results are broadly consistent

with the benchmark results, with slightly weaker results for marsh interactions, similar

to when using two-way clustering in column (7) of Table 2.

One concern is that geography simply captures an effect of urbanization. For example,

battles might not happen where the SD-corridor intersects mountains or marshes because

those areas are uninhabited, which can make it hard to feed and service troops. To explore

this, Table A.15 adds an interaction with cities along the SD-corridor to the specification in

column (6) of Table 2. The variable we call City (or City Indicator) is equal to one for cells

having a city with population above 5,000 in the year indicated for each column of Table

A.15. Population data come from Bosker et al. (2013). For all years, there is a positive

interaction effect between city presence and the corridor, meaning battles are more likely

to happen on the SD-corridor where cities are located, i.e., in more populated areas. More

importantly, the interaction effects with our three geography variables are robust to the

inclusion of these city interactions.

The benchmark analysis focused on battles fought between 1525 and 1913. Table

A.16 instead considers the period 1914-1945, i.e., the two world wars. We otherwise
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follow the same steps as when we constructed the benchmark dataset, dropping pairs

that fought fewer than ten battles and cells to the north/south/west/east of the more

northerly/southerly/westerly/easterly battles. We then end up with 1470 cells instead of

1450, and 6 pairs instead of 11, and thus 8,820 observations rather than 15,950. We also

let the corridor variable be based on Moscow rather than St Petersburg, since Moscow

was the capital for most of the period considered. The results in Table A.16 show that the

interaction effects for seas and marshes come out as insignificant, while the coefficients

for mountains are mostly significant but somewhat smaller in size compared to Table 2.

Although this could be due to the smaller sample, we also ran regressions on a larger

dataset where we did not drop pairs that fought fewer than ten battles, resulting in 31,899

observations (1519 cells and 21 pairs). To conserve space we do not show those results

here, but they come out as even weaker, with no significant interaction effects at all, even

for mountains. Our conjecture is that these differences in results rather reflect how ad-

vances in military and transport technology from the early 20th century started to make

geography less of an obstacle for advancing armies.

A.3 Geodesic Distances: Robustness and Further Exploration

A.3.1 Summary Statistics

Table A.17 presents summary statistics for the main variables used in the city level anal-

ysis, considering pairs of capitals and non-capitals separately. Note that some pairs have

100% mountain (elevation above 800 meters) between them, mostly referring to cities in

today’s Turkey, in particular Niğde and close neighbors. City pairs with almost only sea

between them are located along the Mediterranean coast.

A.3.2 Non-Capitals

In Table A.18 we run the same regressions as in Table 3, but for pairs of cities where both

are non-capitals according to Bosker et al. (2013), which comes to 221,445 unique pairs in

total. As in Table 3, all specifications include city fixed effects.

The estimated coefficients on the fractions sea and mountain in columns (1) and (2)

15



come out positive and significant, while that for the fraction marshland is negative and

significant in column (3), but turns insignificant when all three variables are entered to-

gether in column (4). The Separatedness Index also comes out as positive and significant

in column (5).

In column (6) and (7) of Table A.18, where we cluster standard errors on cell pairs,

the correlations become much less significant. Recall that we get significant negative

estimates for capital pairs with the same cell-pair clustering; see columns (7) and (8) of

Table 3. This strongly suggests that capitals are different from non-capitals. That is, a

separating geography brings capitals closer, while there is no such effect for non-capitals,

and if anything the opposite.

A.3.3 Size Differences for Capitals and Non-Capitals

Table A.19 analyses results for large cities, again looking at pairs of capitals and non-

capitals separately. To conserve space, we consider the Separatedness Index as a single

composite measure of geography.

Across the columns, we restrict the samples to pairs where both cities have popula-

tions above the 50th, 75th, 90th, and 95th percentiles, respectively. Population numbers

are from Bosker et al. (2013) and refer to the year 1800. [Note that columns (1) and (3) are

identical, because the set of capital city pairs is the same when restricting populations to

be above median as when restricting them to be in the 75th percentile.]

Throughout in Table A.19, we find that the relationship between distances and sepa-

ratedness is negative and mostly significant for pairs of capitals, while insignificant and

carrying inconsistent sign for non-capitals. This shows that the patterns we describe for

capitals is likely not caused by their size, but rather something else that makes them

unique. Since large non-capital cities are likely to be commercial centers, these patterns

seem broadly consistent with the idea that seperatedness matters more for security, and

connectedness more for trade.
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A.3.4 Alternative Definitions of Capitals

Our analysis so far has been based on capitals as defined by Bosker et al. (2013). There

are of course different definitions of what constitutes a capital (and/or a sovereign state).

It stands to reason that the mechanisms that we are after might easiest be found among

states that are in regular conflict with each other, such as the Great Power nations of

Europe.

Table A.20 shows some variations on the regression in column (6) of Table 3, again

restricting attention to the Separatedness Index. Column (1) repeats the results found in

Table 3, where we define capitals based on Bosker et al. (2013). Column (3) considers

a smaller sample made up by the same Great Power capitals that we used in our battle

analysis, what we call a narrow definition of Great Powers, while column (2) includes

Stockholm and Amsterdam, which we call a broad definition. Because the samples in

columns (2) and (3) are much smaller, the coefficients are less precisely estimated, but

consistently negative. Figure A.9 shows the associated plots, where both the geodesic

distance and the index are reported as residuals net of city fixed effects.

Columns (4)-(6) of Table A.20 consider the same regressions as in columns (1)-(3), but

with standard errors clustered on cell pairs, with qualitatively similar results.

A.4 Same-State Outcomes: Robustness and Further Exploration

This section considers variations on the regressions in Table 4. Table A.21 presents results

with the same-state indicator measured in 2000 based on Euratlas data (same source as in

Table 4), and Table A.22 shows the results when using modern country borders from the

Global Administrative Boundaries (GADM) database (version 3.6, the most recent at the

time these data were extracted). The results when using these modern state borders are

qualitatively very similar to those in Table 4, which were based on 1900 borders.

The location of cities with populations above 5,000 may well be endogenous to how

state territories form. As yet another complementary exercise, Table A.23 thus considers

similar gravity regressions as those in Table 4, but here across pairs formed only by cities

present in 800 CE and in the year for which we measure same-state outcomes, which

17



we let vary from 800 CE to 1800 CE. Here all specifications include city fixed effects and

standard errors are clustered on cell pairs.

While shrinking the sample considerably, dropping cities that emerged after 800 CE

should mitigate some of these endogeneity concerns, since centralized statehood did not

exist (or was at least not widespread) in Europe by then. The coefficient estimates in Table

A.23 come out with roughly the expected negative signs: not all estimates are highly

significant, but those that are carry the right (negative) sign.

Table A.24 presents results from the same regressions, but using the Separatedness

Index instead of the three geography variables separately, which facilitates interpretation.

The pattern is similar to Table A.23, with the most significant negative estimates around

1300-1500, and slightly less precise after 1600.

A.4.1 Comparing Predicted and Actual Territories Quanitatively

Table A.25 shows how well the size of the predicted territories, which (recall) are mea-

sured as the number of cities predicted to belong to the same Great Power as the capital,

matches the corresponding actual territories in 1900, as defined by the Euratlas borders.

As seen, the greatest mismatch is for the Ottoman Empire, which is predicted to cover

2.69 as many cities as it actually did cover in 1900. Spain’s territory is also over-predicted,

but the others match relatively well.

We can also explore how the predictions perform in terms of which cities are matched.

To that end, we construct what we call an overlap ratio. This is defined as the ratio of

the number of cities in both the predicted and actual territory of a Great Power over the

number of cities in either its predicted or actual territory. The overlap ratio thus ranges

from zero (no overlap) to one (perfect overap); see Figure A.13 for an illustration. As seen

in Table A.25, this ratio is highest for England at .96 and lowest for Austria-Hungary at

.46.

These numbers are calculated based on the actual capitals. We can instead let the cities

that we used for the non-capital corridors (see Section A.2.2) serve as capitals when we

predict the territories, while keeping the capitals of the other Great Powers fixed. Table

A.25 shows that the overlap ratio becomes worse for all Great Powers, except Austria-

18



Hungary, where the predicted territory would be closer to the actual with Budapest as

capital instead of Vienna. Overall, this suggests that capitals tend to be located such that

they are well connected to their own territories, while keeping out of reach by other Great

Powers.

The map in Figure A.14 shows how France’s predicted territory changes when using

Marseilles as capital instead of Paris. As seen, the predicted territory shows little sem-

blance to the actual. Interestingly, northern France here becomes independent, rather

than part of England or some other Great Power.
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Correlations coefficients between

the benchmark capital corridor indictor

and indicators for two alternative corridors:

Great Power pair Non-capital corridors Contour corridors

Austria-Germany 0.57 0.16

Austria-France 0.02 0.17

France-Germany 0.25 0.16

France-Russia −0.05 0.16

France-Spain −0.01 0.16

Spain-Austria 0.18 0.19

Ottoman-Austria 0.39 0.18

Ottoman-Russia 0.16 0.06

England-France 0.47 0.18

England-Russia 0.26 0.13

England-Spain 0.26 0.13

Notes: The table shows, for each Great Power pair, the correlation coefficients between

our benchmark corridor measure between Great Power capitals and two alternative

measures: between the largest non-capital cities, and around the states’ contours.

Table A.2: Correlations between different corridors across Great Power pairs.
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Overlap ratio

(predicted and actual territory

over predicted or actual territory)

Great Power
Ratio of predicted

to actual territory

Using actual

GP capital

Using alternative

GP capital

England 0.96 0.96 0.94

France 0.79 0.53 0.24

Germany 0.81 0.53 0.48

Austria-Hungary 0.71 0.46 0.68

Spain 1.17 0.82 0.70

Ottoman Empire 2.69 0.36 0.30

Notes: The first column shows predicted territory over actual territory (i.e., the number

of cities predicted to belong to the same state as the GP’s capital divided by the number

of cities actually belonging to that GP in 1900). The second and third columns show

the overlap ratio, defined as (1) the size of the intersection of the predicted and actual

territories, divided by (2) the size of the union of the predicted and actual territories;

this ratio always falls between 0 and 1 (see Figure A.13). The second column uses the

actual capital to predict territories (e.g., London for England) and the third column uses

an alternative city (e.g., Manchester for England).

Table A.25: Comparing actual and predicted territories of Great Powers.
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Figure A.8: Binscatter plots contrasting the different relationships between geodesic

distance and separatedness for non-capital cities and capitals, based on the definition of

capitals from Bosker et al. (2013).
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Figure A.9: Plots showing the negative relationship between geodesic distance and

separatedness for Great Power capitals, based on both a narrow definition, using the

same set of Great Power capitals as in the battle analysis, and a broader definition

including Stockholm and Amsterdam.
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