
Cities, Conflict, and Corridors∗

Shuhei Kitamura† Nils-Petter Lagerlöf‡

Abstract

In this paper, we link European state fragmentation to geography, conflict, and

the locations of capitals. First we document that military battles tend to occur close

to the shortest-distance corridors between the capitals of the belligerent powers, ex-

cept where that corridor is intercepted by certain types of geography, specifically seas,

mountains, and marshes. Geography thus seems to have influenced the effective mil-

itary distance between the belligerents’ capitals. Then we explore similar corridors

between a multitude of European cities, documenting two patterns: (1) capitals tend

to be closer to each other when the geography between them is more separating, as

measured by similar types of geography found to affect battle locations; (2) controlling

for distance, the likelihood that any two cities are located in the same state decreases

with the same types of geography between them. We present a model consistent with

these patterns.
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1 Introduction

Two of Europe’s historically most powerful states, France and Britain, were fierce com-

petitors for many centuries and usually of comparable military strength. Their capitals,

Paris and London, are relatively close: about 400 km as the crow flies. So why did neither

of them ever dominate and/or absorb the other? And how come they so often ended up

fighting each other far beyond their own state territories?

This paper proposes a new way to understand state fragmentation in Europe. Our

starting point is not the states themselves, or their borders, but rather something more

temporally and spatially stable: the states’ political centers of power—i.e., their capitals—

and the spaces between these. Specifically, we argue that terrain which slows down mil-

itary incursions makes capitals more secure, and as a consequence allows them to locate

closer to each other, thus giving rise to a less unified state structure.

To concretize this argument, we consider the Great Power era in Europe and utilize a

novel dataset from Kitamura (2021) on geo-coded battles. We document that Great Power

battles tend to occur close to the shortest-distance corridors between the capitals of the

belligerent powers (i.e., the most direct routes connecting them). However, the battles

tend to deviate from the shortest-distance corridor precisely where it is intercepted by

certain types of geography, namely seas, mountains, and marshes. In other words, these

types of geography seem to push battles “off the corridor.” Because battles should occur

along the paths where the belligerents advance or retreat, our interpretation is that these

features of the geography tend to extend the effective military distance between capitals

at a given geodesic (direct-route) distance.1

This is arguably relevant for understanding the location of capitals, and state structure

more generally, because it is well known from military history that state security in prein-

dustrial Europe depended in large part on staying out of reach of foreign armies. Treivish

(2016) finds that capitals tend to be farther from state boundaries compared to similarly

sized non-capital cities. Bosker (2022, p.3) writes that capital cities are often located “in

1This interpretation is broadly consistent with a large body of work in military history on how geogra-

phy shaped warfare and campaign routes; see, e.g., Engels (1978) on Alexander the Great and Collins (1998,

Ch.1) for examples from modern times.
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places further away from a [country’s] borders or coastline that are less vulnerable from

attack by foreign powers.” States have also on occasion moved their capitals in response

to military threats, as when the Royal Government fled from London to Oxford during

the English Civil War (Toynbee, 1970, Ch.6).2

To illustrate the point, consider the example that we started off with: the historical

Great Powers of France and England (or Great Britain). The reason their capitals could

be so close, in our narrative, is that the English Channel stood between them. In military

contests they often ended up battling far away from either capital (e.g., in Ireland and

Spain) precisely because of the sea that separated them. By contrast, when France fought

Russia the battles took place much closer to the shortest-distance corridor. The invader

(mostly France in that case) could advance on land and relatively directly. It is often ar-

gued that Russia has survived threats because of its size, or “strategic depth.”3 However,

one can just as well say that, absent seas and mountains, Russia’s long-term survival has

necessitated longer distances between its capital and those of its potential enemies.

Having documented that geography seems to impact the effective distance between

capitals, we argue that this has some interesting implications for the location of capitals,

and state structure more broadly. We illustrate this in a simple spatial model, where states

locate their capitals to maximize security from neighboring states. Terrain varies spatially

in terms of “separatedness,” meaning how difficult it is to cross. The model predicts

that areas with more separating terrain have more and smaller states, with capitals closer

to each other. Intuitively, in a more separating environment states need less (geodesic)

distance between them to achieve a given effective distance.

To test the model’s predictions, we use data on European city locations from Bosker

et al. (2013) and look at pairs of such cities in 1800. In our first exercise, we look at capital

cities and document that pairs of capitals tend to be closer to each other (in a geodesic

sense) when the geography between them is more separating, as measured by similar

2While we consider a strictly European context, the underlying mechanism may also relate to how

rugged terrain protected African societies from slave traders (Nunn and Puga, 2012).
3See, e.g., Friedman (2020) and Marshall (2015, p. 13). Spolaore and Wacziarg (2016, p. 13) writes that

“[g]eodesic distance [...] limits the ability to project force.”
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types of geography as used in the battle analysis, in particular seas and marshes (with

some caveats for mountains, as discussed later). This is consistent with the model’s pre-

dictions.

We also find some indirect evidence of our proposed mechanism. For example, the

results do not hold for pairs of non-capital cities, presumably because military security

is a concern specific to governments, while most other cities benefit from being well con-

nected, e.g., for trade reasons. Consistent with this interpretation, we also find that the

results strengthen when dropping trade hubs. The results are not driven by capitals be-

ing larger than other cities either, which could otherwise be a confounding factor: the

patterns we document hold for large capitals, but not large non-capitals.

In our second exercise, we look across all city pairs in 1800 (not only capitals) and find

that the likelihood that both belonged to the same state 100 years later (i.e., in 1900, which

is when Europe was the most unified, as measured by its number of countries) decreases

with the same types of geography along the corridor between them. This also matches

the model’s predictions.

We also document similar same-state correlations when using a smaller sample of

cities existing already in 800 CE, (mostly) prior to modern state formation and before any

of these could be described as capitals of modern states, and when measuring outcomes

at various points in time later.

Finally, we illustrate these findings by mapping locations predicted to be most likely

to belong to the same state as different European Great Power capitals. These show a

striking similarity to the actual states at the time, with some interesting deviations that

we think illustrate variation in the degree of state capacity, and viability of state territories

as they appeared in 1900.

The rest of this paper is organized as follows. Section 2 discusses some of the exist-

ing literature. Section 3 sets up a model to inform our empirical exploration. Section

4 presents the data we use. We then move on to the empirical analysis. Section 5 first

presents battle data to support that effective distances do seem to depend on geography.

Section 6 then tests specific model predictions about how geography affects geodesic dis-

tances between pairs of capitals and the likelihood that pairs of cities belong to the same
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state. Section 7 concludes.

2 Existing Literature

The topics discussed here relate broadly to research on the relationship between trade,

war, borders, and political unification (e.g., Alesina and Spolaore, 2003; Rohner et al.,

2013; Gancia et al., 2022; Spolaore, 2023). One contribution in relation to Alesina and

Spolaore (2003) is that we study the location of capitals in relation to one another, rather

than their own states’ borders.

We also differ by focusing on the role of geography as a deep determinant of state

formation, which connects us to an older debate about the link between Europe’s spe-

cific geography and high degree of state fragmentation (see, e.g., Diamond, 1997; Jones,

2003; Hoffman, 2015; Weese, 2016; Ko et al., 2018; Scheidel, 2019; Kitamura and Lagerlöf,

2020; Allen, 2023; Fernández-Villaverde et al., 2023) To test this hypothesis, earlier studies

have explored the correlation between border locations and geography (Kitamura and

Lagerlöf, 2020), or simulated quantifiable models of state expansion with geography as

an input (Fernández-Villaverde et al., 2023). Other papers discuss the role of geography

for conflict, but not for state fragmentation or the location of capitals (see, e.g., Jia, 2014;

Iyigun et al., 2017; Dincecco et al., 2021).

One novelty with our empirical approach compared to all these is that we measure

geography, and its effect, not where borders are located, or where battles occur, but across

corridors between capitals. Our motivation is that the locations of battles in European

history have not always been along state borders, or in any particular types of geography,

but rather reflected the feasible paths of hostile incursions aimed at a state’s centre of

power, and attempts by defenders to stop these.4

Our “corridor” approach may have something in common with work on how spa-

tial proximity affects interstate conflict (e.g., Gleditsch and Singer, 1975; Bremer, 1992;

4However, it is possible that our findings are specific to the European Great Power era, and may not

hold for, e.g., the Roman Empire or Imperial China. As discussed later, they do not seem to hold in Europe

after the outbreak of WWI either.
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Stinnett et al., 2002). More recently, Spolaore and Wacziarg (2016) explore other distance

measures (in particular genetic distances), finding that geodesic distances are negatively

correlated with interstate conflict, also with various other distance controls. However,

none of these papers explores where conflict occurs spatially or interacts with other mea-

sures of geography, such as seas, mountains, or marshland.

A large literature examines how geography affects the locations of modern cities,

and economic activity more generally. The specific types of geography considered vary

but examples include coastlines (Rappaport and Sachs, 2003; Michaels and Rauch, 2018),

portage sites (Bleakley and Lin, 2012), and land productivity (Henderson et al., 2018), as

well as proximate historical factors that might fundamentally depend on geography, e.g.,

the early emergence of statehood (Cook, 2021) and agriculture (Dickens and Lagerlöf,

2023), historical population density (Maloney and Valencia Caicedo, 2016), and trans-

portation and trade networks (Bosker and Buringh, 2017; Barjamovic et al., 2019; Bakker

et al., 2021). Different from most of these studies we explore where capitals tend to locate,

and how state territories form around them, reflecting the way geography affects military

security.

Dincecco and Onorato (2016) study the effect of battles on city growth, but not what

determines battle locations, state territories, or the location of capitals.

3 A Model

Consider a world where locations are represented by points on a unit-length circle. To

facilitate the graphical illustrations below, we shall project that circle to the unit interval,

letting locations 0 and 1 be the same (i.e., where the circle closes). Locations are indexed

by x ∈ [0, 1].

We let “separatedness” at location x be denoted g(x), which is assumed to be differen-

tiable as many times as we need it to be. Empirically, a high degree of separatedness at x,

i.e., a high g(x), corresponds to terrain that is more difficult to cross, i.e., more mountains,

sea, and/or marshland.

There are N states indexed by i ∈ {1, 2, ..., N}. Each state i has a capital at location
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λi. Thus, λi − λi−1 represents the geodesic distance between capitals i and i − 1 (i.e., the

distance “as the crow flies”). By contrast, we let Ei−1,i denote the effective distance between

capitals i and i− 1, given by

Ei−1,i =
∫ λi

λi−1

g(x)dx = G(λi)− G(λi−1), (1)

where G(x) =
∫ x

0 g(z)dz and G′(x) = g(x). In other words, for a given geodesic distance

between two capitals the effective distance is greater when the geography between them

is more separating. Figure 1 provides an illustration.

Since the space is circular, the neighbor to the left of state 1 is state N, and, vice versa,

the neighbor to the right of state N is state 1. We return to these special cases below and

focus first on states i ∈ {2, ..., N − 1}.

3.1 Optimal Locations of Capitals

Each state is assumed to locate its capital to maximize the product of the effective dis-

tances to its neighboring capitals. Although we do not model conflict explicitly, the idea

is that states want to keep capitals secure from incursions by hostile neighbors. We write

the objective function as:

πi = Ei−1,i × Ei,i+1. (2)

We postulate that state N’s capital is located at point 1, which (recall) is the same as

point 0, soon verified to be optimal in equilibrium. Consider next a state i ∈ {2, ..., N − 1},
which sets λi to maximize (2), subject to (1), and (1) forwarded to Ei,i+1 = G(λi+1) −
G(λi), taking as given the locations of the neighboring states’ capitals, λi−1 and λi+1.

The first-order condition can be seen to imply that the effective distances are equal-

ized: Ei−1,i = Ei,i+1.5 Using (1), this can be written

G(λi)− G(λi−1) = G(λi+1)− G(λi). (3)

This hints at the main mechanism in this model: where g(x) is high, and G(x) steep, the

geodesic distance between capitals is shorter, since a given distance between λi and λi−1

5The first-order condition can be written G′(λi)/Ei−1,i = G′(λi)/Ei,i+1, which simplifies to Ei−1,i =

Ei,i+1.
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is associated with a greater gap between G(λi) and G(λi−1). That is, a more separating

geography “affords” a shorter geodesic distance between capitals.

Note also that the effective distance between state 1 and state N (and vice versa) equals

G(λ1): state 1’s leftward neighbor is state N with its capital at location 0 (same as location

1), and G(0) = 0. Likewise, the optimality condition for state 1—corresponding to that in

(3)—becomes G(λ1) = G(λ2)− G(λ1).

3.2 Equilibrium

As mentioned, we here assume, without loss of generality, that the capital of the Nth state

is located exactly where the circle closes: at location 1, which (recall) is the same location

as 0. This can be shown to give

G(λi) =
iG(1)

N
. (4)

(See Section A.1 in the Online Appendix for details.) It is easy to verify from (4) that λN =

1. Moreover, because the effective distances between all capitals equalize in equilibrium,

λN = 1 is optimal for state N. That is, the effective distance between 0 and λ1 is the same

as that between λN−1 and 1.

State 1 also locates its capital optimally, since (4) satisfies G(λ1) = G(λ2) − G(λ1).

Similarly for the remaining states i ∈ {2, ..., N − 1}, the optimality condition in (3) is

implied by (4).

3.3 Simulations

With a functional form for g(x) we can determine the location of each capital on the circle.

For example, applying (4) to the special case where g(x) = x [and G(x) = x2/2] gives

λi =
√

i/N.

With richer functional forms for g(x) it is easiest to use numerical illustrations, as

shown in Figures 2 to 4 [where Figure 2 shows the case where g(x) = x].

Panel A of each figure shows the different shapes of g(x) and the equilibrium location

of the capitals, assuming N = 15 states. Borders between the states are also indicated,

here assumed to be located (geodesically) halfway between the capitals. That is, the left
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border of state i is halfway between λi and λi−1 at (λi + λi−1) /2; the right border of the

same state is located at (λi+1 + λi) /2.

The patterns shown in Panel B are less obvious. There we consider all different pairs

of capitals [N(N − 1)/2 = 105 pairs in this case, with N = 15] and explore how the

geodesic distances between the capitals (as measured on the circle and thus between 0

and 1/2) correlate with the average level of separatedness, g(x), between the capitals

(here normalized to fall between 0 and 1). All three figures show a negative relationship.

The correlation coefficient is −.43 in Figure 2, −.42 in Figure 3 and −.65 in Figure 4. We

can sum this up as follows:

Result 1. The geodesic distance is shorter between pairs of capitals with more separating geogra-

phy between them.

Since state borders are located between capitals, it follows that a more separating ge-

ography also results in more state fragmentation. To illustrate this, Panel C considers

multiple pairs of locations (not only capitals), all at the same fixed distance (here set to

0.1). The bar graph shows how separatedness between the two locations in each pair

differs between those pairs which are located in the same state and those which are split

between different states (i.e., located on different sides of a border, possibly more than

one border). Separatedness thus tends to be lower for pairs of locations in the same state,

compared to those in different states. Note that this holds when considering a fixed dis-

tance between the locations. We can sum this up as follows:

Result 2. Holding the geodesic distance between two locations constant, a more separating terrain

between them makes it more likely that the two locations belong to different states.

Results 1 and 2 follow from three different numerical simulations. For the sake of

brevity we here refrain from proving them analytically, but they can be seen to be qual-

itatively robust to any way we choose g(x) (and N). This is not surprising, since the

mechanisms are so intuitive.

We could make the model much more realistic by allowing for, e.g., state heterogene-

ity, or an endogenous number of states. However, this need not affect any of the specific
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mechanisms that we are after here.6

4 Data

4.1 The Battle Data

Our starting point for the empirical analysis is a new battle dataset compiled by Kitamura

(2021). Most of it originates from Wikidata and Wikipedia.7 This source material changes

over time, but according to Kitamura (2021) edits to the information used here (i.e., years

and locations) tend to be few and minor.

The full dataset contains information about, e.g., start and end years of battles, their

geo-coordinates, and lists of belligerent powers on different sides of the battle.8 Although

it covers battles throughout human history and across the world, here we focus on Europe

and an era in which regular Great Power (GP) conflicts shaped its political geography. To

that end, we drop all battles with geo-coordinates outside a rectangle with its northwest-

ern and southeastern corners in Reykjavík and Baghdad, respectively. We also restrict

attention to battles with a start year from 1525 up to and including 1913. The starting

point coincides with the birth of Prussia, and the end point is chosen to avoid World War

I battles. The Online Appendix considers the period 1914-1945 and discusses how and

why the results differ for this period.

We focus on battles involving the major historical GP states in Europe. Obviously, the

identities, names, regimes, and territories of these powers have changed over time. For

example, one GP has been known as England, Great Britain, and the United Kingdom

(of Great Britain and Ireland) at different points in history. Germany and Prussia have

6For example, we could let states care about their territorial size, defined as the geodesic distance be-

tween the borders of each state, but that would not change anything. With borders located geodesically

half-way between capitals, the territory of state i becomes (λi−1 + λi+1)/2, which does not depend on λi.
7There are other papers using Wikidata and Wikipedia for different applications (see, e.g., Iaouenan

et al., 2021, who study notable people in human history), but to the best of our knowledge Kitamura (2021)

is the first to compile data on battles using this source.
8The dataset also contains information on outcomes of battles (who won or lost, etc.), but we do not use

that information here.
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intertwined histories, the latter being (a dominant) part of the former when the German

Empire was created in 1871.

Here we consider the following seven GPs: England/Great Britain; France; Russia;

Prussia/Germany; Austria/Habsurg Empire/Austria-Hungary; Spain; and the Ottoman

Empire. These are the ones discussed in most detail in the influential study of the Eu-

ropean Great Power system by Levy (1983).9 The matching of battles to GPs was done

manually by Kitamura (2021), who provides further details on this process.

These GPs also had relatively stable capital locations, with two exceptions: Moscow

was the Russian capital before 1712 and after 1917, and 1728-1730, and St. Petersburg

otherwise; Königsberg (Kaliningrad) was the capital of Prussia before 1701 and Berlin

after. We return to these changes in capitals below.

We ignore those battles where the same state (by our definition) was the only bel-

ligerent involved, i.e., on both sides of the battle. This drops many (or most) civil war

battles, with the exception of those where another GP was involved on one side of the

battle. These are primarily battles fought in the English Civil War and during the French

Revolution.

We also drop battles with locations based on rivers and valleys, because exact geo-

coordinates for those battles are not reported by the sources used by Kitamura (2021).

We include naval battles in the benchmark analysis, but the results are robust to drop-

ping these (see Section A.2 of the Online Appendix). It arguably makes sense to include

naval battles, since a negative effect of sea on the likelihood of battle might otherwise

seem obvious.

The seven GPs can form 21 pairs in total, but some of these fought no, or very few,

battles over the period considered. In our benchmark analysis, we drop those pairs which

fought fewer than ten battles, leaving eleven pairs in total.

With this adjustment, our data contains no battles involving Russia or Prussia during

the years when these had Moscow and Königsberg, respectively, as capitals. In effect,

9Three more European states that were defined as Great Powers by Levy (1983) are ignored here, namely

Sweden, Italy, and the Netherlands. However, these were not GPs over nearly as long periods of time as

the other seven; see Levy (1983, Table 2.1).
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we can thus treat St. Petersburg and Berlin as the capitals of Russia or Germany/Prussia

in our benchmark analysis.10 More generally, even though their territories and regimes

were often fluid, all seven GPs can be thought of as having fixed political centers.

The upshot is a set of 685 battles fought between these eleven different pairs of GPs.

4.1.1 Cell Data

The battle analysis is done at the cell level, allowing us to measure battle/non-battle out-

comes. We divide the rectangular area considered (with corners in Reykjavík and Bagh-

dad) into cells of equal size, with sides of one degree latitude and longitude.

We want our results not to be based on cells in the extreme periphery of Europe, where

no battles are likely to be fought. To that end, we drop all cells north of the most northerly

cell in which battles took place between any of the eleven pairs, and cells south of most

southerly such cell, etc. This leaves us with 1,450 cells in total. For each cell, we can

measure the number of battles fought between each of the eleven GP pairs.

All in all, this gives us a dataset with 11× 1, 450 = 15, 950 observations, where the

unit of observation is the combination of a GP pair and a cell. The outcome of interest in

the battle analysis is an indicator for whether a cell had any battles, or not, involving any

particular GP pair. Although there is no time variation, the data structure is panel-like,

in the sense that it displays variation across both cells and GP pairs; for example, a cell

could record battles between England and France, but not between France and Spain, or

England and Spain.

Figure 5 shows a map of the precise battle locations and which cells are coded as battle

cells for at least one GP pair.

10Berlin would probably have been a more important power center than Königsberg ever became. The

choice between Moscow and St Petersburg might be less obvious; for example, Napoleon’s invasion of

Russia aimed for Moscow. However, assigning Moscow as the capital of Russia does not change the main

results; see Section A.2 of the Online Appendix.
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4.2 Geography and Shortest-Distance Corridor

The variable that we call the Shortest-Distance corridor (SD corridor, for short) is an indica-

tor for cells intersected by a 50 km buffer zone around the shortest-distance line between

the relevant pair of capitals. This line takes into account the curvature of the Earth, so it

does not look like a straight line on a projected map.

Different segments of a SD corridor may of course have different access to roads, ports,

and rest stops. However, such factors seem endogenous and probably changed over time

(and across seasons); railways began to matter later in our study period. Moreover, troops

need not necessarily follow roads but could often travel across open fields or frozen wa-

terways. Rather than using road data, we here try to measure directly some dimensions

of the underlying geography that may at a deeper level have hindered troop transports.

We consider three geography variables. Marshland data are from the Global Lakes

and Wetlands Database maintained by the World Wildlife Foundation (linked to here;

Level 3, Categories 4 and 5). We use a relatively broad definition, including freshwater

marshes, floodplain and swamp forest, and flooded forest. The binary cell-level variable

is an indicator of whether a cell is intersected by anyone of those types of marshes.

To define mountains we use elevation data from NOAA National Centers for Environ-

mental Information (linked to here). A cell is defined as having a mountain when its mean

elevation exceeds 800 meters, with alternative cutoffs explored in the Online Appendix.

We define sea as the absence of land, using data from GADM. The sea indicator equals

one when a cell is intersected by sea, i.e., not fully covered by land.

Figure 6 illustrates the battle cells for six GP pairs, together with the associated shortest-

distance corridors, and cells where each of the three geography variables are present.

4.3 City and State Data

The city data are from Bosker et al. (2013), who provide information on multiple European

cities at the turns of the centuries from 800 CE to 1800 CE. City population is reported for

city-years when they exceed 5,000. The dataset also contains geo-coordinates, as well as

information about which cities were capitals at different points in time.
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The spatial coverage is approximately Europe and surrounding areas, such as North

Africa and parts of Near East.

Our benchmark analysis in Section 6 considers cities with a population above 5,000

in 1800 CE, with some robustness checks in the Online Appendix. We choose the year

1800 because it is the latest available in Bosker et al. (2013). The unit of analysis is a

pair of (capital) cities, with geography measured across buffer zones around the shortest-

distance line between cities (or capitals).

The sources for the geography variables are the same as for the cell-level data (see

Section 4.2 above), except that we here measure sea using Natural Earth. Different from

the cell-level analysis, where we constructed binary indicators, we here use the fraction

of the relevant buffer zone covered by mountains, marshland, and sea. This makes more

sense in this context, since the corridors are so much larger geographical areas than the

cells.

Data on state borders are from Euratlas (Nüssli, 2010). These contain geospatial infor-

mation on the borders of sovereign states in Europe and surrounding areas at the turn of

the centuries from 1 CE to 2000 CE. We use these data to determine which pairs of cities

belonged to the same sovereign state. The benchmark analysis considers state borders in

1900 based on Euratlas, while the Online Appendix explores other years and data sources.

5 Battle Data Analysis

For the battle-level analysis the unit of observation is a one-degree cell. We consider cells

both with and without battles, thus allowing us to use information about locations that

did not see any battles. For each cell we measure if there were any battles fought there

during the period of interest and involving the GPs under consideration.

More precisely, our main outcome variable is an indicator variable denoted Bi,p, taking

the value one if a battle between pair p occurred in cell i over the benchmark period (1525-

1913), and zero otherwise. (Section A.2 of the Online Appendix considers an intensive-

margin measure as the outcome variable, i.e., the number of battles rather than a battle

indicator.)
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Our independent variables of interest include three geography variables, all binary

indicators. H800,i equals one if average elevation in cell i exceeds 800 meters above the

sea, and zero otherwise. (We consider different heights in Section A.2.) Mi is an indicator

for a marsh (or swamp) intersecting cell i. Si indicates whether the cell is intersected by

sea.

The remaining variable of interest is the shortest-distance corridor. Like the geography

variables, this is also a binary indicator, and denoted by Di,p. Note that Di,p varies both

across cells and GP pairs.11

5.1 Direct Effects

We are going to present results from a few different regression specifications. Consider

first this:

Bi,p = α + βDDi,p + λSSi + λHH800,i + λMMi + ωp + εi,p, (5)

where ωp is a GP pair fixed effect, and εi,p is an error term. If β̂D > 0, then battles tend to

happen more often in cells along the shortest-distance corridor than elsewhere.

The first three columns of Table 1 bear this out. In column (1) we consider a specifi-

cation without any geography controls or fixed effects; column (2) adds geography con-

trols; and column (3) adds both geography controls and pair fixed effects. Throughout

β̂D comes out as positive and significant. We also note that all three geography measures

carry negative coefficients, suggesting that battles tend to occur on land, and in terrain

that is not too mountainous or marshy. However, these direct effects are hard to interpret,

since geography can vary with, e.g., distance from the corridor.

We can also add cell fixed effects to the formulation in (5), absorbing the geography

controls, and giving us the following specification:

Bi,p = βDDi,p + ωp + γi + εi,p, (6)

11For example, if p refers to the pair England-France, and cell i intersects with the shortest-distance cor-

ridor between London and Paris, then Di,p = 1, while Dj,p = 0 for cells j 6= i off the London-Paris corridor,

and Di,q = 0 for all GP pairs q 6= p, whose corridors do not cover cell i.
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where γi capture the cell fixed effects. This is estimated in column (4) of Table 1, again

showing us β̂D > 0.

One possibility is that the positive coefficient on the shortest distance corridor merely

captures an effect from cells far away from the belligerent states, in regions where they

had no reason to fight. To address this, columns (5) and (6) of Table 1 consider the same

specifications as in columns (3) and (4), but restrict the sample to cells within 300 km of

the shortest-distance corridor. This shrinks the sample to about 10% of its original size.

While the estimated coefficient of interest shrinks in magnitude, it remains positive and

significant.

Finally, column (7) of Table 1 considers the same specification as in column (4), but

allows standard errors to be clustered at the pair and cell level. The corridor indicator

becomes slightly less precisely estimated, but remains significant at the 5% level.

5.2 Interaction Effects

So far we have documented that GPs tend to fight more battles along their shortest-

distance corridors. Next we examine if our measures of geography tend to push battles

off that corridor. To that end, we estimate the following regression equation:

Bi,p = βDDi,p

+βSDi,pSi

+βH,800Di,pH800,i

+βMDi,pMi

+ωp + γi + εi,p,

(7)

where, as before, ωp and γi are fixed effects for GP-pair and cell, respectively, and εi,p is an

error term. As earlier, we expect β̂D > 0. Now we should also expect β̂S < 0, β̂H,800 < 0,

and β̂M < 0. As discussed above, we might expect this geography effect to be present in

all cells, not only along the corridor, but any such effects are absorbed by the cell fixed

effects.

In other words, we expect seas, marshes, and mountains to make the hypothesized

path of military advance deviate from the shortest route. If this is the case, it suggests
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that these geographical characteristics increase the effective military distance between

the two GPs political centers, at given geodesic distance.

Table 2 considers a few different regressions involving these interaction effects. Columns

(1)-(3) show the results from three separate regressions, where the independent variables

include the indicator for cells on the shortest-distance corridor, and each of the three ge-

ography variables and their interactions with the shortest-distance corridor, entered one

at a time. The interaction effects all come out as negative, although not significant for

marshes. Column (4) enters them all together and now the coefficients on the interaction

terms become precisely estimated, all three being significantly different from zero at the

5% level, or lower. This holds also when entering GP pair fixed effects in column (5), and

with both pair and cell fixed effects in column (6); note that the direct geography effects

are dropped in column (6), as they are absorbed by the cell fixed effects. Column (7) uses

the same fixed-effects specification as in column (6), but allows standard errors to be clus-

tered at the pair and cell level. This renders the coefficient on marshes insignificant, but

seas and mountains still come out as significant at the 5% level.

Overall, this supports the idea that these types of geography tend to push battles off

the shortest-distance corridor, on which battles would otherwise tend to be fought, the

result being and increase in the effective distance between the capitals.

Figure 7 illustrates how the means of the different geography variables vary between

observations (cell-GP pairs) with and without battles, both for the full sample and for

observations on the shortest-distance corridor between the belligerents’ capitals. This

shows that geography indeed differs between observations with and without battles, in

particular when we consider cell/pairs on the corridor. In other words, these types of

geography do push battles off the corridor.

Section A.2 of the Online Appendix examines the robustness of the results in Table 2,

e.g., by adding city interactions, dropping battles close to capitals, letting Moscow be the

capital of Russia (instead of St. Petersburg), dropping sea battles, using the number of

battles (rather than a battle dummy) as the dependent variable, and allowing for spatially

correlated standard errors. None of these changes alters the results much, at least not in

ways suggesting that the correlations of interest are spurious; in some cases the results
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rather strengthen.

One thing that does weaken the results is measuring battle outcomes over a later pe-

riod, 1914-1945. However, this finding arguably makes sense, since advances in trans-

port technology at some point should make geography less of an obstacle for advancing

armies. It is also consistent with how new modes of transport, such as railroads and

steam ships, affected the spatial distribution of economic activity (see, e.g., Delventhal,

2018; Nagy, 2020; Ellingsen, 2021).

6 City Data Analysis

The analysis so far suggests that certain types of geography tend to push battles off the

shortest-distance corridor between the belligerents’ capitals. This supports the main as-

sumption underlying the model in Section 3, that geography affects the effective distance

between the capitals.

Next we are going to explore the specific results of the model, as summarized by

Results 1 and 2. To recap, Result 1 states that the geodesic distance between capitals

should be shorter when the geography between them is more separating. Result 2 states

that two locations, holding constant the geodesic distance between them, are more likely

to belong to different states if the geography between them is more separating.

6.1 Geodesic Distances Between Capitals

To test Result 1 we use the dataset from Bosker et al. (2013), and look at pairs of capital

cities in 1800. We also add the Russian capital of St. Petersburg, to get a little closer to our

battle data, but results are not sensitive to this.

We then run a few regressions where the dependent variable is the geodesic distance

between the capitals, or the length of the corridor, denoted Li,j. The three independent

variables of interest correspond to those used in our earlier battle analysis: the fraction

mountain (with elevation above 800 m), H800,i,j; the fraction sea Si,j; and the fraction

marsh, Mi,j. These are all measured as fractions across a corridor’s total area (the 50 km
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buffer zones around then shortest-distance line). The regression equation can be written:

Li,j = δSSi,j + δH,800H800,i,j + δMMi,j + ηi + ηj + εi,j, (8)

where ηi and ηj denote city fixed effects, one for each of the capital cities in the pair.12

These fixed effects absorb anything that directly affects distances for any particular capital

and/or its location, and follows the approach of Spolaore and Wacziarg (2006) (see also

Spolaore and Wacziarg, 2009, Footnote 42).

The estimates of the different δ’s should all be negative according to Result 1. Columns

(1)-(4) of Table 3 present results from a number of such regressions.

As seen in columns (1) and (3) of Table 3, larger fractions sea or marshland along the

corridors are associated with a shorter geodesic distances, with the estimated coefficients

being negative and highly significant. This is consistent with Result 1. That is, a more

separating terrain tends to push the capitals closer to each other.

The coefficient on the fraction mountain in column (2) carries the wrong sign, and

also comes out as highly significant. However, when all three geography variables enter

together in column (4), the coefficient on the fraction mountain shrinks in absolute mag-

nitude and becomes less precisely estimated, while the corresponding coefficients on the

fractions sea and marshland become larger in absolute terms.

The correlations are thus broadly consistent with our theory, in which each capital

locates to maximize its effective distances to its neighboring capitals. At the same time, all

cities would presumably benefit from being close to their trading partners, and this may

apply to at least some capital cities too. (Alternatively, trade hubs may be more likely to

become capitals than other cities, e.g., due to their size or administrative skills.) One way

to explore this is to identify which capitals are also trade hubs, and drop these from our

sample. If our hypothesis is correct, then we should expect our results to be stronger in

this restricted sample. In column (5) of Table 3, we drop all pairs where both of the capitals

12More precisely, let ηiφi + ηjφj be two terms in the sum ∑N
k=1 ηkφk, where N is the number of capitals (or

number of cities), and ηk is the coefficient on the dummy variable for capital k, denoted φk. This dummy is

such that φk = 1 if i = k or j = k, and φk = 0 otherwise. The two terms (and the whole sum) thus equal

ηiφi + ηjφj = ηi + ηj for capital cities i and j.
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are trade hubs, defined as either a port city or a city located on a Roman road.13 This

shrinks the sample from 435 to 248 capital pairs. The estimates of the coefficients on the

sea and marshland variables remain negative and significant, as in column (4), while the

coefficient on the fraction mountain now comes out as negative, although not significant.

This suggests that our model is more applicable when military security matters more

relative to trade, as we would expect.

Rather than looking at each type of geography in isolation we can consider a compos-

ite measure that we call a Separatedness Index, constructed as this weighted average of the

three geography variables:

.162× Si,j + .166× H800,i,j + .13×Mi,j. (9)

The weights are given by the estimated coefficients on the interaction terms in column (5)

of Table 2. These capture to what degree the presence of each type of geography tends

to push battles off the shortest distance corridor, thus extending the effective distance.14

The coefficient on this index is negative and significant in column (6) of Table 3, consistent

with our theory: capitals tend to be geodesically closer to each other when they have more

separating geography between them.

Columns (7) and (8) present results based on the same specifications as in (4) and (6),

but with standard errors clustered on pairs of 5× 5 degree cells.15 The estimates stay sig-

nificant. Finally, columns (9) and (10) drop pairs where both of the capitals are trade hubs,

as in column (5), here also with clustered standard errors. The results stay significant in

both specifications. In column (10), the estimated coefficient on the Separatedness Index

is in fact larger than in column (8), again suggestive of our proposed mechanism.16

13For the latter, we rely on Bosker et al. (2013), and include what they call “hubs” and “non-hubs” (i.e.,

cities on a single Roman road or at the intersection of at least two). To define port cities, we rely on manual

coding and data from Natural Earth (see Section 4.3).
14Since the weights in (9) are similar in size an equal-weighted average produces similar results.
15That is, we divide the map into cells centered on degrees latitude and longitude divisible by 5. Each

pair of capitals (or cities) belongs to one unique cell pair and we cluster the standard errors on such cell

pairs.
16However, this is somewhat sensitive to how we define trade hubs; the estimate does not change much

compared to column (8) if we instead define trade hubs as cities on a crossing of at least two roman roads,
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In Section A.3 of the Online Appendix, we explore various alternative specifications

based on the Separatedness Index. We restrict the sample to capitals of Great Powers only

(trying two different definitions), finding negative, and mostly significant, correlations.

We also run regressions based on pairs of non-capital cities, here defined as pairs of cities

where at least one of them is not a capital. We find that the negative effects of a more

separating geography on geodesic distances pertain to pairs of capitals specifically, rather

than other city pairs.

In the Online Appendix we also restrict the sample to pairs of particularly large cities,

as measured by population. This could be of interest because capitals tend to be larger

than other cities, suggesting size itself might drive these patterns.17 However, we find

no significant relationship between distances and separatedness for large non-capitals,

while we do find it for large capitals. Our interpretation, consistent with the discussion

about trade hubs above, is that large non-capital cities tend to be large because they are

commercial and/or transport hubs, for which trade and connectedness matter more than

security.

All in all, the results presented in this section seem consistent with Result 1 of the

model.

6.2 Same-State Outcomes

To test Result 2 we again use the city data from Bosker et al. (2013), and the year 1800

CE, but consider all cities with a population above 5,000 (i.e., not only capitals). We want

to know if these were more likely to belong to different states if the geography between

them was more separating controlling for the geodesic distance between them.

As in the analysis of capital pairs above, we use the geo-coordinates of cities to find

the shortest-distance line between city pairs and measure the same types of geography

as in our earlier analysis across 50 km buffer zones from the shortest-distance line. As

or port cities, and drop these from the sample.
17Larger cities may be more likely to become capitals, and capitals may also grow faster than other cities.

For an example of the latter, see, e.g., Kulka and Smith (2023), who finds that US cities grow faster when

becoming county seats.
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before, we refer to these as corridors between cities.

Also in line with the capital-pairs analysis, we focus on 1800 CE, the latest year for

which Bosker et al. (2013) report data. Same-state outcomes are based on Euratlas borders

of independent states in 1900, a century after we measure cities. This is when the number

of states in Europe was at its lowest (see, e.g., Gancia et al., 2022, Table 1), and also a

point in time when the states that we considered in our battle analysis formally existed,

in particular Italy and Germany.

Excluding cities outside Euratlas state territories in 1900, this gives us 241,860 city

pairs.

Let the outcome variable be an indicator denoted Ci,j, taking the value one if the two

cities i and j belonged to the same state (in 1900, the year when we measure outcomes),

and zero otherwise. Using the same notation as earlier for the remaining variables, we

can now write the regression equation as

Ci,j = λLLi,j + λSSi,j + λH,800H800,i,j + λMMi,j + ηi + ηj + εi,j, (10)

where the terms ηi and ηj represent the same type of fixed effects as in (8), although refer-

ring to all cities (not only capitals). These absorb anything that varies at the city level.

We are interested in the estimates of the different λ’s, which we all expect to carry

negative signs. That is, any two cities should be less likely to belong to the same state if

they are farther from each other and if they are more separated by seas, mountains, or

marshes. Put another way, they should be more likely to belong to the same state if they

lie close to each other, with flat, non-marshy dry land between them.

Table 4 presents least-squares estimates from various specifications similar to that in

(10), letting the different geography variables enter both one by one and together.

The signs come out the expected way, and highly significant, when all geography con-

trols enter together in column (4). The same is true when entering the fraction sea or the

fraction mountain separately in columns (1) and (2). The significant and positive effect

when entering the fraction marshes separately in column (3) is an anomaly, but (as men-

tioned) this result reverses when entering all geography variables together in column (4).

We also see that the inclusion of the fraction marshes increases the size of the estimated
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coefficients on the other two geography variables, suggesting that these variables capture

different dimensions of the separating effects of geography. Notably, the marshes vari-

able has a negative correlation with the other two, as swampy areas tend to be located on

land and at low elevation.

Column (5) uses the Separatedness Index, defined in (9), in lieu of the three geography

variables. The index comes out as negative and significant at the 1% level.

Columns (6) and (7) cluster the standard errors on cell pairs (same as in Table 3), with

similar results as in columns (4) and (5), except that the fraction marshes comes out as

insignificant only at the 10% level in column (6).

Section A.4 of the Online Appendix makes several robustness checks of the results in

Table 4. First, we explore if the results hinge on using 1900 as the outcome year, a point

in time when Europe was at its most unified. We find that they are not. Letting the same-

state dummy be defined on state borders in later years than 1900 the results are almost

identical.

We also consider pairs of cities that existed earlier than 1800. This could be important

if we believe that some cities emerged simultaneously and/or endogenously with states.

However, when using pairs of cities that existed in 800 CE already—preceding modern

European state formation by a few centuries, and the earliest year for which Bosker et al.

(2013) have data—the results are similar to those in Table 4.

6.2.1 Heat Maps

We can use the same-state regressions to make predictions about which city locations

are most likely to lie within the state territories associated with each of the Great Power

capitals used in the analysis of battles earlier. We here focus on London, Paris, Madrid,

Berlin, Vienna and Istanbul. Figure 8 shows different so-called heat maps, indicating

which other cities are predicted to be most likely to belong to the same states as each

of these respective capital cities, or what we can label connectedness. The predictions

are based on the regressions with the Separatedness Index in column (5) of Table 4 (but

ignoring the city fixed effects when generating the predictions).

The maps in Figure 8 show a striking resemblance between the territories of the actual
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states in 1900 and the lighter colors of the heat maps. Most importantly, the contours are

not circular, as they would be if the geodesic distance alone was used to predict same-state

outcomes. For example, the territory associated with Vienna clearly takes a non-circle

shape because of the Alps.

Some exceptions are also interesting to note. For example, the part of France clos-

est to the Dover-Calais straight has a relatively high connectedness to London (i.e., high

probability of belonging to the same state as England). These are areas where England

displayed some early military presence in wars against France. Similarly, southern France

has a relatively low connectedness to Paris, compared to northern France, consistent with

the weaker and later spread of centralized state capacity to the south, where Langue d’Oc

(or Occitan) languages were long spoken. The areas well connected to Istanbul reach

deep into the Balkans and Europe, which does not match well with the map of the Ot-

toman Empire in 1900, but fits much better a century earlier (see Figure A.3 in the Online

Appendix).

7 Conclusion

In this paper we use data on battles and cities in Europe and its surrounding areas to

gain insights about the role of geography in determining the location of capitals and state

structure more generally. The focus is on the Great Power era, here defined as 1525-1913.

The conceptual starting point is that geography matters because it affects what we call

the effective (military) distance between different locations, in particular between capi-

tals. We motivate this assumption with some novel data compiled by Kitamura (2021)

on battle locations. We find that battles tend to occur within a 50 km buffer zone around

the shortest-distance line between the capitals of the belligerent powers, what we call a

shortest-distance corridor. However, battle locations deviate from that corridor where it

is intercepted by certain types of geography, specifically seas, mountains, and marshes.

This result is robust to various controls, sample restrictions, and econometric specifica-

tions. Because battles may be expected to occur close to where armies advance or retreat,

our interpretation is that these types of geography tend to extend the effective military
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distances between capitals, holding constant the geodesic distance.

To help us think about the implications of this finding, we set up a model where states

locate their capitals to maximize security from neighboring states, and where the terrain

varies in how difficult it is to cross, what we call separatedness. The model predicts that

areas with more separating terrain have more and smaller states, with capitals closer to

each other.

To test these predictions we use data on the location of capitals and other cities from

Bosker et al. (2013), and examine pairs of capitals and other cities, measuring the same

three types of geography along corridors between these pairs. We find the model predic-

tions to be broadly consistent with the data. Capitals tend to be closer in a geodesic sense

when separated by more seas and marshes (although the results for mountains are more

mixed). Similarly, pairs of cities (capitals and others) are more likely to belong to different

states when the geography between them is more separating, as measured by these three

types of geography.

To illustrate this last result, we also construct maps showing the most probable state

territories predicted by our same-state regressions, based on the geo-coordinates of some

of Europe’s Great Power capitals. The maps show striking resemblance to the actual state

territories, with a couple of exceptions that we argue are interesting in their own right.
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A.1 Equilibrium Distribution of Capitals

Define the effective distance between the capital of state i and the capital of its neighbor

to the left as

χi = G(λi)− G(λi−1), (A.1)

with χ1 = G(λ1), since (recall) we postulate that state 1’s neighbor to the left (state N)

has its capital at 0 (same as 1). We know from (3) that χi equals the same constant for all

states i ∈ {2, ..., N − 1}. Call that constant χ.

For state 1, we also have χ1 = G(λ1) = χ, since it equalizes the effective distance

from its capital to both its neighbors’ capitals, and the effective distance to its rightward

neighbor’s capital equals G(λ2) − G(λ1) = χ2 = χ. The same holds for state N. The

effective distances to the capitals of its neighbors to the right and left must equalize for its

capital location to be chosen optimally, so χN must equal the effective distance between

the capitals of states 1 and N, i.e., χN = χ1 = χ.

Thus, χi = χ for all states i ∈ {1, ..., N}, implying that ∑N
i=1 χi = χN = G(1) [recalling

that G(0) =
∫ 0

0 g(z)dz = 0], which gives

χ =
G(1)

N
. (A.2)

We now see that G(λ1) = χ1 = χ = G(1)/N. Then (A.1) says that G(λ2) = G(1)/N +

G(λ1) = 2G(1)/N; G(λ3) = 3G(1)/N; and so on, with G(λN) = NG(1)/N = G(1). We

can write this more succinctly as

G(λi) =
iG(1)

N
. (A.3)

For example, in the case where g(x) = x, and G(x) = x2/2, we see that G(λi) =

λ2
i /2 = iG(1)/N = i/(2N). Disregarding the negative root (for obvious reasons) it

follows that

λi =

√
i
N

. (A.4)

A.2 Battle Data Analysis: Robustness and Further Exploration

In the main analysis we defined cells with mean elevation above 800 meters as moun-

tain cells. Table A.1 considers alternative definitions, using the same specifications as in

2



column (6) of Table 2. The largest positive, and most significant, coefficients are found

when using the 800-meter threshold. For very low levels of elevation the coefficients turn

negative, which is due to cells at low elevation often having marshes, or being (fully or

partially) covered by sea.

Table A.2 considers the same specifications as in Table 2, but uses only land battles

when defining which cells are battle cells, dropping naval battles. This renders the neg-

ative interaction effect from sea cells more significant, for reasons that are rather obvious

and not interesting. More importantly, the negative interaction effects for mountains and

marshes stay robust.

The negative effect of the SD-distance corridor, and its interactions with geography,

could be driven by battles happening close to the capitals between which the corridor

spans. To explore this possibility, Table A.3 drops those cells that are closer than 200 km

from any of the relevant capitals for each pair. The results are largely robust to this chance,

with negative interaction effects throughout, slightly less significant for sea interactions

and more significant for marshes, when compared to Table 2.

Not every military incursion was directly aimed at capturing the opponent’s capital.

The perhaps most well-known example is the French invasion of Russia in 1812. Even

though the Russian capital was St. Petersburg at the time, Napoleon actually advanced

towards Moscow. Table A.4 presents regressions results similar to those in Table 2 but

based on a dataset where Moscow is treated as the Russian capital instead of St. Peters-

burg. The results change very little compared to those in Table 2.

Table A.5 presents the same regressions as in Table 2 but lets the dependent variable be

the number of battles in the cell (between the relevant pair and from 1525 to 1913), rather

than just a battle indicator. The results are robust to this change, and in fact strengthen

for marshes in column (7).

Table A.6 allows for spatially adjusted standard errors and declining weights, apply-

ing the acreg command in Stata and the Bartlett option from Colella et al. (2023). The spec-

ifications are the same as in column (6) of Table 2, changing the distance cut-off within

which standard errors are allowed to be correlated. The results are broadly consistent

with the benchmark results, with slightly weaker results for marsh interactions, similar

3



to when using two-way clustering in column (7) of Table 2.

One concern is that geography simply captures an effect of urbanization. For example,

battles might not happen where the SD-corridor intersects mountains or marshes because

those areas are uninhabited, which can make it hard to feed and service troops. To explore

this, Table A.7 adds an interaction with cities along the SD-corridor to the specification

in column (6) of Table 2. The variable we call City (or City Indicator) is equal to one for

cells having a city with population above 5,000 in the year indicated for each column of

Table A.7. Population data come from Bosker et al. (2013). For all years, there is a positive

interaction effect between city presence and the corridor, meaning battles are more likely

to happen on the SD-corridor where cities are located, i.e., in more populated areas. More

importantly, the interaction effects with our three geography variables are robust to the

inclusion of these city interactions.

The benchmark analysis is focused on battles fought between 1525 and 1913. Table

A.8 runs the same regressions as in Table 2, but uses battles taking place 1914-1945, i.e.,

during the two world wars. This renders the interaction effects for seas and marshes in-

significant, and weakens the interactions for mountains. One possibility is that advances

in transport technology from the early 20th century started to make geography less of an

obstacle for advancing armies.

A.3 Geodesic Distances: Robustness and Further Exploration

Table A.9 shows some variations on the regression in column (6) of Table 3, using the

Separatedness Index.

Column (1) considers a much larger sample consisting of pairs of non-capital cities

(241,425 pairs in total, i.e., the same sample as in Table 4), while column (2) replicates (6)

of Table 3, using only capital city pairs. As mentioned earlier, we here define non-capital

pairs as those where at least one city is not a capital, by the relevant definition, but the

results are very similar if we use a sample where both cities in the pair are non-capitals.

As we have already discussed, the negative coefficient in column (2) implies that a

more separating terrain is associated with pairs of capitals being located closer to each

4



other. Interestingly, the relationship is the opposite when we consider non-capital cities.

In other words, the separating effects of geography seems to be specific to capitals. Figure

A.1 shows binscatter plots illustrating the different relationships in columns (1) and (2)

of Table A.9; note that both the geodesic distance and the index are measured net of city

fixed effects.

Our analysis so far has been based on capitals as defined by Bosker et al. (2013). There

are of course different definitions of what constitutes a capital (and/or a sovereign state).

It stands to reason that the mechanisms that we are after might easiest be found among

states that are in regular conflict with each other, such as the Great Power nations of

Europe. Column (4) considers the same Great Power capitals that we used in our battle

analysis, here called a narrow definition of Great Powers, and column (3) adds Stockholm

and Amsterdam, what we call a broad definition. These samples are much smaller than

that made up by all capitals as defined by Bosker et al. (2013), but as seen in columns

(3) and (4) we still find a negative relationship, although insignificant for the narrow

definition. See Figure A.2 for the associated plots, where both the geodesic distance and

the index are reported as residuals net of city fixed effects.

Columns (5)-(7) present the same regressions as in columns (2)-(4), but with standard

errors clustered on cell pairs, similar to Table 3. The results are very similar.

Table A.10 analyses results for large cities, again looking at pairs of capitals and non-

capitals separately. We restrict the samples to pairs where both cities have populations

above the 50th, 75th, 90th, and 95th percentiles. Both population data and the defintion of

capitals is from Bosker et al. (2013). [Note that columns (1) and (3) are identical, because

the set of capital city pairs is the same when restricting populations to be above median

as when restricting them to be in the 75th percentile.]

Throughout in Table A.10, we find that the negative relationship between distances

and separatedness is negative and mostly significant for pairs of capitals, while insignifi-

cant and carrying inconsistent sign for non-capitals [The coefficient estimate is borderline

significant at the 10% level in column (7).] This shows that the patterns we describe for

capitals is likely not caused by their size, but rather something else that makes them

unique. Since large non-capital cities are likely to be commercial centers, these patterns

5



seem broadly consistent with the idea that seperatedness matters more for security, and

connectedness more for trade. That is, being out of reach by one’s enemy is important for

cities that are centers of government, while for other large cities trade and communication

might matter more.

A.4 Same-State Outcomes: Robustness and Further Exploration

This section considers variations on the regressions in Table 4. Table A.11 presents results

with the same-state indicator measured in 2000 based on Euratlas data (same source as in

Table 4), and Table A.12 shows the results when using modern country borders from the

Global Administrative Boundaries (GADM) database (version 3.6, the most recent at the

time these data were extracted). The results when using these modern state borders are

qualitatively very similar to those in Table 4, which were based on 1900 borders.

The location of cities with populations above 5,000 may well be endogenous to how

state territories form. As yet another complementary exercise, Table A.13 thus considers

similar gravity regressions as those in Table 4, but here across pairs formed only by cities

present in 800 CE and in the year for which we measure same-state outcomes, which

we let vary from 800 CE to 1800 CE. Here all specifications include city fixed effects and

standard errors are clustered on cell pairs.

While shrinking the sample considerably, dropping cities that emerged after 800 CE

should mitigate some of these endogeneity concerns, since centralized statehood did not

exist (or was at least not widespread) in Europe by then. The coefficient estimates in Table

A.13 come out with roughly the expected negative signs: not all estimates are highly

significant, but those that are carry the right (negative) sign.

Table A.14 presents results from the same regressions, but using the Separatedness

Index instead of the three geography variables separately, which facilitates interpretation.

The pattern is similar to Table A.13, with the most significant negative estimates around

1300-1500, and slightly less precise after 1600.
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Figure A.1: Binscatter plots contrasting the different relationships between geodesic

distance and separatedness for non-capital cities and capitals, based on the definition of

capitals from Bosker et al. (2013).
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Figure A.2: Plots showing the negative relationship between geodesic distance and

separatedness for Great Power capitals, based on both a narrow definition, using the

same set of Great Power capitals as in the battle analysis, and a broader definition

including Stockholm and Amsterdam.
23



Fi
gu

re
A

.3
:H

ea
tm

ap
s

fo
r

si
m

ul
at

ed
st

at
e

te
rr

it
or

ie
s

ar
ou

nd
Is

ta
nb

ul
,s

im
ila

r
to

Fi
gu

re
8,

bu
ts

ho
w

in
g

th
e

ac
tu

al
bo

rd
er

s

of
th

e
O

tt
om

an
Em

pi
re

in
bo

th
18

00
an

d
19

00
.

24


	Introduction
	Existing Literature
	A Model
	Optimal Locations of Capitals
	Equilibrium
	Simulations

	Data
	The Battle Data
	Cell Data

	Geography and Shortest-Distance Corridor
	City and State Data

	Battle Data Analysis
	Direct Effects
	Interaction Effects

	City Data Analysis
	Geodesic Distances Between Capitals
	Same-State Outcomes
	Heat Maps


	Conclusion
	Online Appendix
	Equilibrium Distribution of Capitals
	Battle Data Analysis: Robustness and Further Exploration
	Geodesic Distances: Robustness and Further Exploration
	Same-State Outcomes: Robustness and Further Exploration


