C The model

C.1 Illustrations

Figure C.1 provides an illustration of how Y™* varies with N = 1/s for the same numerical
example as in Figure 2 in the paper.

Figure C.2 shows how location specific productivity varies across space and how it changes
as territories shift. The numerical example is the same as in Figure 2 in the paper, except
that N = 4 and € = 0.2. This means that 20% of the locations belong to different states when
territories shift between the left and right position. When territories are in the left position,
the state territories are as follows: for state 1: (0,0.2) U (0.95,1); for state 2: (0.2,0.45); for
state 3: (0.45,0.7); for state 4: (0.7,0.95). The associated border locations are located at
0.2, 0.45. 0.7, and 0.95. The capitals are located at 0.125, 0.375, 0.625, and 0.875, for states
1 to 4, respectively.

To illustrate how Proposition 4 works, consider the border at 0.2 when territories are
in the left position. The productivity levels are 0.65 and 0.85 on the different sides of the
border; the higher productivity is in state 1, i.e., on the side of the border that is closest to
the capital. When territories shift to the right position the productivity level is 0.85, since
the location is now in the interior of state 1, the state whose capital the location is closest

to.

C.2 Other ways to model spatial resource allocation

This section considers a version of the model where the elite allocate resources non-uniformly
across the state’s territory. To economize on notation, we here set ¢ = 0, meaning borders
are assumed to be stable. However, nothing changes qualitatively if we assume € > 0, only
that v is replaced by (1 + &2).

The major change compared to the setup in the paper is that resources are dependent
on location, and now denoted by fii,t(d), where d denotes distance to the center, and ¢ and ¢
index country and period. Output at distance d from the center is denoted ffivt(d), and now
given by
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where A, is country ¢’s provision of a public good, located at the center of a country, which
here benefits locations at distance d from the center by a factor Z(d), given by (2) in the
paper. As in the paper, A;,; could represent country i’s level of technology.

In each period, the elite first allocate the resources under their control to maximize

total output. Denoting their total amount of resources by R;%, the elite thus maximize



2/, 2y, Y;+(z)dz, subject to 2 f Riy(x)dx = R}%, taking Rj% as given. Somewhat infor-
mally, ignoring that the control variable is continuous, the Lagrangian associated with this
maximization problem can be written as £ = 2 [ Y (x)de + Q [Rfott -2, 2R )d:c}

where () is the Lagrangian multiplier. The first-order condltlon can be written as
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for all d € [0,s/2], which states that the marginal productivity of resources is equalized

across locations.

Using (C.2), we can write resources at each location as fELt(d) (1 —a] /Q)é Z(d)A; ;.
Using the budget constraint for resources gives
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Recall from (2) in the paper that Z (d) = 1—4~d, which implies that fo x)dr = (s/2)(1—
7vs). Inserted into (C.3), this gives
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which can be inserted into (C.2) to give resources per location as
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Intuitively, resources allocated to locations at distance d from the center, relative to the
average resources across the country, are proportional to each location’s productivity, relative

to the average productivity of the country. Substituting (C.5) into the production function

n (C.1) shows that
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Again using fo z)dr = (s/2)(1 — 7s), and recalling that average output per location
equals (2/s) [, 2y Yii (d)dm =Y, we get
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Finally, we can set total resources to RIY = sR;;, where R;; denotes resources per

location, as given by (4) in the paper. This produces the same expression for Y;, as in (3)

in the paper, with € = 0, except that the factor 1 — ~ys is now replaced by (1 — vs)?.
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C.3 When do fragmented regions having higher output than uni-
fied?

Proposition 1 in the paper states that the model is ambiguous as to whether more fragmented
regions have higher or lower output per area than less fragmented ones. Here we try to say
something about when each case prevails. We do this by comparing a fully unified region to
one with two states, and pin down parametric conditions under which the former or latter has
higher output. We restrict attention to the case when £ = 0, since the concept of unstable
borders (¢ > 0) has no meaning in a fully unified region.

For ease of exposition, first let

()" ()

which is increasing in . Intuitively, a high @ is associated with a high cost of distance (a
high «). Tt can be seen that Q > 1/2, since 7 > 0. We can now state the following:

Proposition C.1 Suppose € = 0, and consider two regions, one fully unified (s = 1) and
one with two states (s =1/2).

(a) If Q > 1, then steady-state output per location (Y*) is always (weakly) higher in the
fragmented region.

(b) If Q < (1_%&) (f:gigg), then steady-state output per location (Y*) is always (weakly)
higher in the unified region.

(c) If (p%a) (M) < @ < 1, then steady-state output per location (Y*) is (weakly) higher

1-B+ap
in the fragmented region if, and only if,
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Proof: First rewrite (11) in the paper, with e = 0, as
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B
The task is to find conditions under which ?(%) % Y (1). Using (C.10), and the expression
for F((s,A) in (9) in the paper, gives
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where we have used the definition of ) in (C.8), and where we let

B Bla+ (1—a)A/2]
HN =1 i -a 3

Note that H'(\) > 0, and recall that A € [0,1]. Then some algebra demonstrates that

(C.12)

Hy= 252 st (C.13)
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We can now show the following;:

If @ > 1, then ?(%)/?(1) > 1 always holds. To see this, use (C.11) and (C.13) to note
that it holds even when A = 0, and since }A/(%) /Y (1) is increasing in A, this proves part (a)
of the proposition.

IfQ < (1%) (f:gigg), then ?(%)/?(1) < 1 always holds. To see this, use (C.13), and

some algebra, to note that the given condition on @) is equivalent to @) (%) H(1) <1,

which implies that ?(%)/?(1) < 1 holds even when A = 1; then recall again that ?(%)/?(1)
is increasing in A, so it must hold also for A < 1. This proves part (b) of the proposition.

Finally, if Q € ((1.%) (f:ggg) ,1), then ¥ (1)/¥ (1) > 1 holds if, and only if,
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Using (C.12), some algebra shows that this inequality can be written as in (C.9). This proves

) HO) > 1. (C.14)

part (c) of the proposition. Q.E.D.

Proposition C.1 is illustrated in Figure C.3. Part (a) describes the case when the cost
of distance is so high that fragmented regions are always richer, even without technology-
inducing resource competition (A = 0). Part (b) describes the case when the cost of distance
is so low that fragmented regions are always poorer, even with maximum resource compe-
tition (A = 1). Part (c) describes the case with intermediate costs of distance. Then the

fragmented region is richer if A is large enough.

D Descriptive statistics

D.1 State coverage

Section 3 in the paper provided some motivation of the choice of period over which we
measure borders, i.e., 1500-2000. We noted, among other things, that the spatial coverage
shrinks as we go back in time. The reason is that we restrict attention to cells with at

least one state present throughout the period over which we measure border presence. For
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example, the 5202 cells in our benchmark sample are covered by statehood at each turn of
the century from 1500 to 2000.

Figure D.1 shows the change over time in the fraction cells covered by states among all
land cells in our data (i.e., cells that could potentially be covered by statehood) starting
at different turns of centuries from 800 to 2000. By 2000, almost all land cells (99.5%) are
covered by states, according to the Euratlas maps. The fraction cells covered by a state from
1500 and on is about 61%, and the corresponding fraction starting in 800 is 38%.

In the paper we consider border frequency 1300-1800 as an alternative to our benchmark
border frequency measure. One reason for this choice of alternative starting point can be
understood from Figure D.1. There it can be seen that the fraction cells with statehood

makes a relatively large drop from 60% to 53% when starting in 1200 instead of 1300.

D.2 Cross-correlations between different border variables

Table D.1 presents cross-correlations between each of the six Euratlas border dummies (b; ;)
and border frequency 1500-2000 (B;).

We also construct two other border dummies based on other sources than Euratlas.
The first of these we call the current border dummy, which is based on maps from the
Global Administrative Areas (www.gadm.org). These are supposed to show contemporary
state borders. We do not know to which specific point in time that these refer, but the
GADM Version 2 data that we use were posted in January 2012.! The other dummy vari-
able is one for language borders constructed from the World Language Mapping System
(www.worldgeodatasets.com /language).

All border dummies in Table D.1 show highly significant and large positive correlations
with border frequency. The border dummy for 2000 has the lowest correlation with border
frequency, but even that coefficient is as high as 0.599. The border dummies also show
positive correlation with each other, typically larger between closer years, suggesting that
borders are not stationary but change gradually over time. Despite the rise and fall of several
states and empires over these centuries, the locations of the borders between them are thus
quite persistent. This is consistent with a theory where some underlying constant factor,
such as geography, ultimately determines border locations.

Table D.1 also shows a very high correlation coefficient (0.934) between the Euratlas
border dummy for 2000 and the current border dummy, which also speaks to the reliability
of the Euratlas data.

The language border dummy shows the highest correlation with the Euratlas dummy for
2000 (a correlation coefficient of 0.510) and the current border dummy (0.531). It thus seems

1We also adjust the GADM data to let the Channel Islands belong to Great Britain and Aland belong

to Finland. While these have some degree of autonomy it is hard to categorize them as sovereign states.



that state formation today follows ethnic lines more closely than in preindustrial times. This
may reflect the spread of democracy, making it easier for ethnic minorities living in a well
defined territory to secede and form their own states (see, e.g., Alesina and Spolaore 2003).
It could also be due to genocide, ethnic cleansing, and policies by state governments that
make ethnic and linguistic minorities comply with the state’s majority identity, as well as

more voluntary forms of migration.

D.3 Cross-correlations between different measures of historical

population densities

Table D.2 shows the pairwise correlation coefficients between different measures of historical
and current population densities. The benchmark measure used in the paper is here denoted
LPD-GPW. This is the log of one plus the population density in a cell, where the population
measure comes form the Gridded Population of the World (averaged over the period 2000-
2015), and land area from Natural Earth (see Section B of the appendix to the paper for
more details).

The other measures of population density refer to different historical years, and are
calculated following the same principles using data on historical populations from HYDE, a
source that we discuss more in Section I below. The measures from HYDE are here denoted
LPD-HYDE and refer to the years 1500, 1800, and 2000, respectively. The number of cells
with data from both the GPW and HYDE is 5150, i.e., most of the cells in our benchmark
sample of 5201 cells with data from GPW.

The main insight from Table D.2 is that population levels today and in preindustrial
times show high positive correlation. Log population densities in 2000 and 1800 from HYDE
have a correlation coefficient of 0.835, and the correlation between the HYDE measure for
1800 and our modern benchmark measure from GPW is 0.731. This illustrates that modern
and historic population densities measure roughly the same thing. That is, spatial variation
in modern population densities across this area was in large part determined several centuries
ago. This is hardly surprising, since cities are located in roughly the same places today as
they were several centuries ago.

Since the modern-day measure from the GPW presumably comes with less measurement
error than those from HYDE, is also used in many other studies, and has slightly larger

spatial coverage, we utilize this in our benchmark regressions in the paper.



D.4 Cross-correlations between different measures of modern out-

comes

Table D.3 shows the unconditional correlation coefficients between border frequency (B;)
and various measures of modern outcomes. Log night lights and log population density are
the main variables used in the paper; recall that log night lights is measured per unit of land
area. For further details on sources and definitions of these, see Section B of the appendix
to the paper.

Log night lights per capita is constructed from the same sources by first dividing total
night lights by total population in each cell, to get night lights per capita. What we here
call log night lights per capita equals the log of one plus night lights per capita.

GDP data are from Kummu et al. (2018) and provide GDP estimates at the level of 30
arc-second resolution. From these we construct two variables. The first we call log of GDP
per area. This is constructed by first computing the mean GDP across pixels in a cell for
the years 2000 and 2015, and then taking the log of one plus the average GDP across the
two years.

The other variable is log GDP per capita. This is constructed by dividing total GDP with
population by cell and by relevant years (2000 and 2015), where the population data come
from the Gridded Population of the World (the same used to calculate population density).
Log GDP per capita is then defined as the log of one plus average GDP per capita across
the two years.

The Kummu et al. (2018) data rely on interpolations from regional National Accounts
data, and are not commonly used in the literature (perhaps because they are relatively
recent). Therefore, we have chosen not to include these in the benchmark analysis in the
paper. The purpose of this section is mainly to assess what our benchmark measures might
capture. We first note from Table D.3 that both log night lights and log population density
show positive and significant correlations with log GDP per capita, with coefficients of 0.464
and 0.148, respectively. As argued in the paper, this seems to reflect that per-capita incomes
are higher in cities.

More importantly, log GDP per capita shows higher correlation with log night lights
per land area (our chosen benchmark measure) than with log night lights per capita, with
correlation coefficients of 0.464 and 0.092, respectively. This speaks against using night lights

per capita as a measure of living standards.



E Geography variables

E.1 Motivation and interpretation of geography variables

Table E.1 tries to provide an overview of the different geography variables we have chosen
for our benchmark specification, and what motivates these choices. The categories are the

same as in the paper, although not all geography factors are mutually exclusive.

E.2 Elevation and ruggedness

We have considered various measures of how mountainous a territory is. Our benchmark
measures have been log ruggedness (i.e., the log of the standard deviation in elevation), and
two so-called mountain dummies, indicating if the average elevation of a cell exceeds 1000
and 2000 meters, respectively.

An alternative measure is the log mean elevation of a cell, which we explore in this
section. When constructing this variable, in order not to drop cells with negative elevation
(73 cells in total among the 5202 in our benchmark sample), we use elevation exceeding the
lowest level in the sample. That is, if x; denotes mean elevation of cell 7 (in meters) and 7 is
the minimum x; across the 5202 cells (which in our baseline sample is —28 meters, located
close to the Caspian Sea), then log elevation is constructed as In(1 + x; — ), which equals
zero for the cell with the lowest elevation.

Table E.2 shows that both log elevation and log ruggedness show positive and significant
pairwise correlations with border frequency, and also high correlation with each other. The
two thus seem to capture similar channels through which a mountainous terrain might cause
state fragmentation. This makes sense, since areas at high elevation also have cliffs and steep
slopes and thus high variation in elevation.

We also computed an alternative measure of ruggedness, following the formula used by
Nunn and Puga (2012). This is essentially designed to measure the ability for human and
other prey to hide. A very rough description of how it is constructed runs as follows. Starting
with a grid of raster points at which elevation is measured, let e, . be elevation at a raster
point located in column ¢ and row r of that grid. The Nunn-Puga measure of ruggedness at

that raster point is then defined as

r+1 c+1
2
(€ij —€re),
i=r—1j=c—1

which can then be averaged across all raster points in a cell (in our case), or a country (as
in Nunn and Puga 2012).



As shown in Table E.2, the log of one plus the Nunn-Puga ruggedness measure has a
correlation of 0.928 with our benchmark measure. They thus essentially capture the same
thing.

Columns (1)-(3) of Table E.3 consider some regression specifications where we use dif-
ferent combinations of these variables. Column (1) of Table E.3 replicates column (10) in
Table 2 in the paper. Column (2) enters log elevation in lieu of the 2000 meter mountain
dummy, and column (3) drops log ruggedness. Log elevation has a relatively high positive
unconditional correlation with border frequency in Table E.2, and in column (3) of Table
E.3, where it is the only variable capturing mountainousness. However, the coefficient on
log elevation comes out with a negative and significant sign when entered together with log
ruggedness in column (2).

As discussed, the reason is that log elevation is highly correlated with log ruggedness,
which gives rise to multicollinearity, and likely explains the negative sign on the log elevation
coefficient. This is why we choose not to enter both. By contrast, the 2000-meter mountain
dummy and log ruggedness both come out as positive and significant in many (if not all)
specifications, e.g., in column (1) of Table E.3.

Columns (4)-(5) of Table E.3 are identical to columns (1)-(2), but replace our bench-
mark measures of ruggedness with the one based on the Nunn-Puga method. The results
are virtually identical, which is not surprising given the high correlation between the two
measures.

Columns (6)-(10) of Table E.3 repeat the regressions in columns (1)-(5), but control for
latitude; column (6) is identical to column (1) of Table 3 in the paper. As in the paper, we

find that log ruggedness now loses significance, which holds also for the Nunn-Puga measure.

E.3 Coal, temperature, and lakes

Table E.4 considers three other geography variables. The coal dummy indicates presence of
coal in the cell, as defined by the presence of rock of specific ages in maps provided by the
Bundesanstalt fiir Geowissenschaften und Rohstoffe (BGR) in Hannover, Germany.?
Temperature refers to mean annual temperature measured in degrees Celsius averaged
over the period 1961-90. The source is GAEZ, which we used also for agricultural suitability
and rainfall.
The last variable measures the fraction of the cell’'s area covered by lakes, based on

Natural Earth data, which is the source used also for, e.g., coasts and rivers.

2We use the map IGME 5000 from BGR, and the file “age (chronostratigraphic).lyr” in a folder labelled
“layer.” The coal dummy indicates presence of rocks from the following geological periods: Carboniferous
(C), Carboniferous-Permian (C-P), Carboniferous-Middle Permian (C-P2), Early Carboniferous (C1), Late
Carboniferous (C2), Late Carboniferous-Permian (C2-P), and Late Carboniferous-Middle Permian (C2-P2).



Consider first columns (1)-(3). Coal and temperature show positive and negative corre-
lations with borders, respectively, both highly significant, while the lake variable comes out
as positive and slightly less significant. The same pattern holds when all three are entered
together in column (4). However, none of them comes out as significant when controlling for
our benchmark set of controls in column (5)-(8).

All specifications in Table E.4 control for latitude, but the results referring to these three

variables do not change qualitatively without this control.

E.4 Alternative agricultural suitability variables

Recall that our two benchmark measures of agricultural suitability are based on the four
most common grains (wheat, barley, oats, and rye), and refer to potential yields when using
rainfed and irrigated agriculture, respectively. Table E.5 examines two alternative measures
of agricultural suitability.

Suitability for potato agriculture is constructed from GAEZ, the source used for our
benchmark measures, and has been used by Nunn and Qian (2011). The Caloric Suitability
Index (CST) comes from Galor and Ozak (2016) and is also partly based on GAEZ, but is a
calorie weighted measure of the yield a cell can generate if growing the crop with the highest
caloric content. Here we use the definition that considers all crops available after 1500, i.e.,
in the wake of the Columbian exchange. Both are constructed under the assumption that
rainfed agriculture is used.

Columns (1)-(3) of Table E.5 enter the potato measure and CSI, both separately and
together, in lieu of the two benchmark agricultural suitability measures, keeping all other
benchmark controls unchanged. There is a positive significant effect from CSI on borders,
and the potato measure comes out as negative, but significant only when entered together
with CSI in column (3).

This pattern holds broadly when including our benchmark measure for suitability for
rainfed agriculture as control in columns (4)-(6), and when entering both of our benchmark
suitability measures, rainfed and irrigated suitability, in columns (7)-(9).

The two alternative measures are highly correlated with our benchmark measure of suit-
ability for rainfed agriculture: the correlation coefficients are 0.81 and 0.75 for the potato
measure and CSI, respectively. They are somewhat less correlated with the irrigated suitabil-
ity measure, for which the corresponding correlation coefficients are 0.45 and 0.41. Since both
the potato measure and CSI are constructed under the assumption that rainfed agriculture
is used, this is not too surprising.

Because we want to be able to capture the possibly different effects of suitability for
rainfed and irrigated agriculture, and because the potato and CSI measures do not have any

irrigation based equivalents, we choose the measures based on the four common grains as
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our benchmark controls.

One other argument against using the potato measure could be that the four common
grains may have been an overall more important source of nutrition than the potato for
the region and period that we consider. According to Leff et al. (2004, Table 5), wheat
is currently the most commonly grown crop by land area in the region that we consider
(Asiatic Russia, Central Asia, Europe, the Middle East, and Northern Africa). The land
most suitable for potato cultivation is concentrated in Europe (Nunn and Qian 2011, pp.
611-612).

E.5 Alternatives to river and coast dummies

Table E.6 shows the results when regressing border frequency on the benchmark set of
geography controls, but using non-dummy measures of river and coast presence. We consider
two alternative measures: river and coastline density, defined as the length of a river or coast
line, divided by the cell’s land area; and the log of one plus the length of the river or coastline,
respectively. (These lengths are measured in kilometers.) Because we control for the log size
of the cell’s land area, the latter measures correspond approximately to the log of the former.

The dummies used in the paper are indicators of the presence of a river or coast in the
cell, so they take the value one when the corresponding density or log length variables are
strictly positive, and zero otherwise.

Column (1) is identical to column (10) in Table 2 in the paper. Column (2) uses the
density measures, and column (3) the log length measures. Columns (4)-(6) are identical to
columns (1)-(3) but control for latitude; column (4) is thus identical column (1) of Table 3
in the paper.

Not too surprisingly, most results are qualitatively similar. The major difference is that
coastline density here comes out as positive. This is driven by a strong negative correlation
between log land area and coastline density; their pairwise correlation coefficient is —0.75.
When not controlling for log land area, the estimated coefficient is negative. In other words,
the positive correlation seems to be driven by variation in the denominator in the coastline

density measure.

E.6 Alternative transformations of geography variables

There are no clear rules when choosing whether to log a variable, or not, and/or whether
to transform it in other ways. One informal rule of thumb might be to log a variable
that appears to have a log-normal distribution, since the distribution of its logged cousin is
normally distributed. The same argument might apply for any variable that skews to the
right. This is roughly the approach taken in our paper. Figure E.1 shows the distribution
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of ruggedness and rainfall, before and after log transformation. As seen, the distribution of
ruggedness is skewed, which is why we choose to log it. The distribution of rainfall is much
less skewed, and indeed becomes more skewed when logging it.

Table E.7 explores how our results change using logged instead of non-logged variables,
and vice versa. Column (1) reproduces column (1) of Table 3 in the paper; column (2)
uses non-logged distances to coast and steppe; column (3) uses non-logged distances and
non-logged ruggedness; and column (4) reverts to the benchmark setting, but with logged
rainfall. (When logging rainfall we follow the same approach as when logging other variables:
we use the log of one plus the deviation of rainfall from the sample minimum.)

The estimated coefficients on all variables carry the same signs as those on their logged
or non-logged equivalents, and come out as equally significant, or more significant (in the
case of ruggedness). The coefficients on the other variables are largely unchanged, except

that the steppe dummy now comes out as less significant.

F Beta coefficients

Table F.1 reports the standardized (or beta) coefficients, for a number of specifications where
border frequency is regressed on geography. To simplify the coding, we also report robust
but non-Conley adjusted standard errors, but that alteration has no effect on the estimated
beta coefficients. Column (1) applies the same specification as in column (10) of Table 2 in
the paper, and reproduce the beta coefficient estimates reported in the text in Section 4.1
of the paper. Column (2) is identical to column (1), but uses the 1000 meter (instead of
2000 meter) mountain dummy. Columns (3)-(4) and (5)-(6) use the same specifications as
columns (1)-(2), but add controls for latitude, and latitude fixed effects, respectively.

Table F.1 shows that the beta coefficients change size depending on specification, but
mostly not by large amounts. The sum of the absolute values of the eleven beta coefficients
(except log land area and latitude) is close to one in all specifications. Recall that this sum
measures the effect on border frequency when changing all variables together in the direction
which raises border frequency.

We also note that the standard errors are much smaller when not applying the Conley
(1999) adjustment, as we did in the paper (i.e., when not adjusting for spatial correlation).
This is why many coefficients, such as log ruggedness and mountain dummies over 1000
meters, come out as more significant here than in the corresponding specifications in Tables
2 and 3 in the paper.

Table F.2 reports results for various specifications when regressing modern outcomes
on border frequency, with beta coefficients (and robust standard errors). All coefficient

estimates come out as significant, which they did also in the corresponding specifications
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with Conley adjusted standard errors. The magnitude of the beta coefficients shrinks when
adding more controls. The estimated beta coefficients reported in the text in Section 5.1 of
the paper (0.13 and 0.14 for log night lights and log population density, respectively) are

confirmed in columns (3) and (7).

G Fixed effects for artificial countries

Tables 4 and 6 in the paper reported results in terms local deviations in dependent and
independent variables. This absorbs factors that are relatively constant among neighboring
cells. Another approach that achieves roughly the same thing is to enter fixed effects for
clusters of cells that are close to each other. Here we use square clusters of (at most) nine
cells: one cell in the middle, plus neighboring cells to the south, north, west, east, and in
four diagonal directions. (Where neighboring cells are missing there will be fewer than nine
cells.) We can think of these clusters as artificial countries.

Obviously, no unobserved characteristic would be distributed exactly in square clusters,
and how they are centered will always be somewhat arbitrary. However, they should ar-
guably do a good job absorbing any factor that is approzimately constant between closely
neighboring cells.

Tables G.1 and G.2 present results from regressions identical to those in Tables 3 and 5 in
the paper (including controls for latitude or latitude fixed effects as indicated), but with fixed
effects for artificial countries of nine neighboring cells. The estimated coefficients are similar
to those in Tables 4 and 6 in the paper, where we have used the same specifications but
in terms of local deviations. For example, the more spatially clustered geography variables,
measuring distances to coast and steppe, come out as less significant both in Table G.1 and
Table 4 compared to Table 3.

Notably, the coefficients on border frequency in Table G.2 carry the opposite signs com-
pared to Table 5 in the paper. This is consistent with Proposition 2 in the paper, and also
what we would expect to find given the results in Table 6. As discussed, both methods

absorb unobserved characteristics among cells that are close to each other.

G.1 What do artificial country fixed effects absorb?

As argued, entering these artificial country fixed effects amounts to the same thing as running
regressions in terms of local deviations. The model in the paper explains why we may see
different results at the global and local levels when we study effects of borders on modern
outcomes.

Here we want to better understand what these fixed effects absorb when we study the
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effects of geography on borders. To that end, consider a world where cells can be located in
one of several artificial countries, or regions, indexed by a. Let B, , be border frequency in

cell 7, located in region a, and suppose the true data generating process is
Bio = a+ PG, +1G; +Xla + i, (*)

where I, is some non-geography variable (e.g., institutions or culture) that varies only be-
tween regions, and G, and G2 are two geography variables: G|, varies both between and
within regions, while G2 is a geography variable that varies only between regions. For ex-
ample, rivers and mountains can be found to some extent in all regions, and might thus be
captured by Gil’a. By contrast, G2 could represent suitability for rainfed or irrigated agricul-
ture, or distances to steppe or coast, which are very spatially clustered and thus (almost)
completely constant within (small) regions.

Suppose we do not have data on I,. Omitting I, when estimating (*) could be problematic
if I, is correlated with G2. The OLS estimate of 7 may then be biased. One way to address
this is to enter region fixed effects, i.e., a full set of dummies, one for each region. However,
if we estimate (*) with region fixed effects, then we cannot get an estimate of 7, since (by
assumption) it does not vary within regions. The fixed effects would absorb the variation we
are after. We might get a more precise estimate of 5, but it would still be wrong to conclude
that n = 0 (i.e., that G2 has no effect on B;,).

In other words, entering fixed effects for small regions (such as nine-cell artificial coun-
tries) can give the false impression that some geography variables have no effect on borders.
These fixed effects may be good at removing any bias when estimating 7 that is caused
by omitting I,, but they also absorb the effects of G>. This is why we want to be careful
when interpreting the estimated coefficients on some geography variables in Table G.1, and
in Table 4 in the paper, in particular those that are spatially clustered.

Moreover, we are not necessarily trying to estimate 7, since this parameter probably does
not capture all the ways in which borders depend on geography. That is, I, itself should
depend on G2, since geography is a primitive, while culture or institutions are endogenous,
and presumably depend on geography, directly or indirectly. To make this point, suppose
that

Lo =+ 7G5 + &, ()
where ¢ and 7 are coefficients and £, is an error term. Using (**), we can write (*) as
Bio =@+ BGi, + G, + Eia, (**%)

where @ = a + xp, 1 =1+ xm, and €;, = €;4 + & Estimating (***) with OLS without
region fixed effects would give us an unbiased estimate of 1, which is what we are really
interested in, since this captures all the ways in which geography affects borders, including
those that work through I,.
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H Fixed effects for modern countries

Tables H.1 and H.2 show the results when we enter fixed effects for existing countries, as
defined by modern borders from GADM (see Section D.2 for details). The specifications are
otherwise identical to those in Tables 3 and 5 in the paper.

The results when regressing borders on geography in Table H.1 have some similarities
with those where we entered artificial country fixed effects in Table G.1, and the local
regressions in Table 4 in the paper. Note, e.g., that mountains over 1000 meters come out as
more significant than those above 2000 meters. This may not be too surprising, since many
countries are relatively small. Within modern countries current and historical borders tend
to be located, e.g., by rivers, in rugged terrain, and where it rains.

Table H.2 reports results from regressing modern outcomes on borders. Here we find
no significant results. One interpretation is that many of the positive effects through which
borders affect development work through institutions and other factors that are relatively
constant within modern countries. For example, institutions may depend on the size and
shape of modern countries, which is in itself ultimately the outcome of geography. In other
words, these modern country fixed effects may be endogenous, and thus not very good
controls.

Moreover, as just mentioned, because many modern countries are relatively small, these
regressions may partly capture the (negative) local correlations, not only the (positive) global
ones. Recall from the model that within countries, the poorest regions tend to be around
the borders, while more fragmented regions (i.e., with more countries) can still have better

outcomes on average.

I Alternative measures of urbanization

Table 8 in the paper reported results from a series of panel regressions using data from Bosker
et al. (2013) on historical urban populations. These data cover eleven turns of centuries
from 800 to 1800. In the paper, we consider the period from 1500, since this is when our
benchmark border data start. (Section 3 in the paper discusses the choice of benchmark
period.)

Tables 1.1 and 1.2 show the results for the periods 1300-1800 and 800-1800, respectively,
in specifications otherwise identical to those in Table 8 in the paper. (Note, however, that
the number of cells shrinks to 598 in Table 1.2, due to a smaller sample when imposing the
restriction of continual statehood present from 800.)

The result are very similar results to Table 8. In particular, the coefficient on the same-

century border dummy comes out as negative and significant. That is, cells that lose a border
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from one century to the next experience a simultaneous rise in urbanization, consistent with
Proposition 4 in the paper.

Recall that Bosker et al. (2013) report urban population numbers only for some well
documented cities, making us lose much of the sample. Table 1.3 instead utilizes data
from the History Database of the Global Environment (HYDE), which provides data on
historical urban and rural populations with greater spatial coverage (Klein Goldewijk et al.,
2010, 2011). We calculate the urbanization rate as urban population over total population,
referred to below as the fraction urban for short. While HYDE has greater spatial coverage
than Bosker et al. (2013), our understanding is that it interpolates across space to generate
more spatial disaggregation. This is why we choose not to use these data in our benchmark
regressions in the paper, but they help showing how robust our results are.

The regressions in Table .3 are based on a panel of 5025 cells from 1500 to 2000; these
are the cells with HYDE data available that overlap with our benchmark sample of 5202
cells. (To get a balanced sample, we drop all cells with HYDE data missing for any century,
but this has very little impact on the results.) The results in Table 1.3 are also close to those

in Table 8 in the paper.

J Dropping subsamples of cells

Table J.1 reports results when regressing border frequency on geography and dropping dif-
ferent subsamples. Column (1) replicates column (10) of Table 2 in the paper. Columns
(2)-(5) drop coast cells, fully unified cells (B; = 0), fully fragmented cells (B; = 1), and cells
in Northern Europe, respectively.?> Some correlations change compared to the benchmark
specification in column (1). For example, when we drop coastal cells in column (2), rugged-
ness and distance from the coast come out as insignificant, and the steppe dummy as more
significant.

Dropping unified cells in column (3) shrinks the sample from 5202 to 1807 cells, rendering
most coefficients insignificant, but log ruggedness, the river dummy, and rainfall are still
significant, and of the same sign as in the benchmark specification. By contrast, dropping
the 70 cells that are fully fragmented in column (4) changes the results very little compared
to the benchmark in column (1).

In column (5) we drop cells in Northern Europe, which includes, e.g., Britain and Scan-

3Cells in Northern Europe include all cells intersected by the GADM territories of the following contem-
porary countries: Denmark, Estonia, the Faeroe Islands, Finland (including the Aland Islands), Iceland,
Latvia, Lithuania, Norway, Sweden, and Great Britain (including the Channel Islands, Isle of Man, and
Northern Ireland). This is based on the UN classification codes for detailed regions, using the STATA
command kountry. See https://unstats.un.org/unsd/methodology/m49/
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dinavia. The major change here is that suitability for rainfed agriculture loses significance.
Part of the reason is that this region has below average suitability for any type of agriculture,
also rainfed, even though it rains more there; it is also slightly less fragmented than other
cells, with fewer city states of the type seen on the continent. However, the change is also
due to a positive correlation between borders and suitability for rainfed agriculture within
Northern Europe, which is lost when dropping this region.

Columns (6)-(10) report the results from the same regressions as in columns (1)-(5),
but control for latitude; column (6) thus replicates column (1) of Table 3 in the paper.
The differences between column (6) and columns (7)-(10) are qualitatively similar to those
between column (1) and columns (2)-(5).

Notably, almost all estimated coefficients that come out as significant when dropping
these subsamples carry the same sign as in the corresponding benchmark regression; log
distance to coast is a borderline exception in column (7). In other words, the benchmark
correlations between geography and borders do not differ qualitatively when dropping any
of these particular subsamples.

Table J.2 reports the results when regressing modern outcomes on border frequency. We
enter our benchmark set of geography controls in columns (1)-(5), and add latitude controls
in columns (6)-(10). Border frequency comes out as positive and significant throughout.
When dropping unified cells in columns (3) and (8), the estimated coefficients on border
frequency even become larger.

The correlation stays positive and significant also when we drop Northern Europe. This
contrasts with the results in Table 5 in the paper, where we saw that the correlation between
modern outcomes and border frequency weakened considerably when we dropped Western
Europe or the Holy Roman Empire. In other words, these results are not driven by Britain

and Scandinavia, but rather continental Europe.

K The Abramson data

Our border variables were computed from the maps compiled by Euratlas (Niissli 2010). In
this section we apply the same procedure to another set of maps used by Abramson (2017).
These use as starting point the Centennia Historical Atlas, the original creator of which is
Reed (2008). We refer to these as the Abramson data for short.

These data obviously measure something very similar to Euratlas. They also measure
borders at a higher temporal frequency than the Furatlas data. On the other hand, they
cover a smaller area, and only up to 1790.

Because these data are proprietary we do not use them in our benchmark regressions.

Rather, the exercise undertaken here is to compare the results when using the Abramson
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data for the same, or adjacent, years as those for which we have Euratlas data.

To that end, and because the Abramson data end in 1790, we first compute border
frequency across the years 1500, 1600, 1700, and 1790 from the Abramson data. This gives us
a border frequency variable defined over a total of 3861 cells overlapping with our benchmark
Euratlas data, which we can compare to the corresponding Euratlas border frequency index
based on the years 1500, 1600, 1700, and 1800. The two border frequency measures have a
correlation coefficient of 0.80 across these 3861 cells.

Table K.1 shows the results when regressing the Abramson and Euratlas border frequency
measures on our benchmark set of geography controls. Columns (1)-(3) include latitude
controls and columns (4)-(6) latitude fixed effects.

Consider first column (1), which shows the results for the Euratlas 1500-1800 border
frequency measure based on all 5202 cells. These are similar to those based on the same
source for the years 1500-2000 in column (1) in Table 3 in the paper. Column (2) again
uses the Euratlas 1500-1800 measure as the dependent variable, but on a restricted sample
of 3861 cells on which the Abramson measure is defined. Distance to coast and the steppe
dummy lose significance; the estimated coefficient on log ruggedness comes out as negative
but not significant. Column (3) uses the Abramson measure as the dependent variable. The
main surprise here is that the negative coefficient on log ruggedness comes out as significant
at the 5% level. However, the other coefficients do not change much between columns (2)
and (3).

Columns (4)-(6) use identical specifications as columns (1)-(3), but enter a full set of
latitude fixed effects instead of latitude controls. Now the coefficient on log ruggedness
comes out as positive again, although less significant with the Abramson sample in column
(5) compared to the Euratlas sample in column (4). Notably, all estimated coefficients are
very similar between columns (5) and (6), i.e., when we keep the sample region constant and
only change the border data.

Table K.2 presents the results when regressing modern outcomes on the Abramson and
Euratlas border frequency measures, with our benchmark set of geography controls and
latitude controls. Both measures of border frequency show positive and significant correlation
with both night lights and population density.

The Abramson data are useful for one more exercise. As discussed in the paper, the areas
once covered by the Holy Roman Empire exhibit very high levels of border frequency. In
short, we can think of the HRE not as an empire, but rather a type of multi-state agreement
that in effect prevented actual unification. Table K.3 provides one way to illustrate this.
First, we note that border frequency 1500-1800 among cells in the HRE in the Euratlas
equals 0.65, while border frequency for cells outside the HRE is just 0.08. To see that this is

not an artefact of the Euratlas data, we note that the corresponding numbers using border
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frequency 1500-1790 from Abramson are 0.69 and 0.09, respectively. That is, these two
sources report just about equally large variation in state fragmentation within and outside
the HRE.

L Using other measures of modern outcomes

Table L.1 explores regressions using alternative outcome variables. Panels A and B regress
log night lights and log population density on border frequency in five different specifications,
repeating the first five columns of Table 5 in the paper. Recall that our benchmark log night
lights variable refers to night lights per area (i.e., the average across pixels in a cell).

Panels C and D report results using contemporary data on GDP per area and GDP per
capita, respectively, using GDP data from Kummu et al. (2018) and population data from
GPW. Panel E makes use of population density measured in 1800 based on HYDE. These
data sources are discussed in further detail in Sections D.4 and I above, and in Section B of
the appendix to the paper.

Columns (1)-(3) confirm that the correlation between border frequency and modern out-
comes broadly holds for these alternative outcome variables, although the results for log
GDP per capita are somewhat weaker when using latitude fixed effects in column (3). The
results are not too sensitive to the choice of outcome variable, but the effects seem larger on
population density than livings standards.

Columns (4) and (5) show that the correlation weakens or is reversed when dropping
Western Europe, or the HRE. In the case of GDP per capita, the correlation turns negative
and highly significant. According to this measure of modern outcomes, state fragmentation
has been harmful to development outside Western Europe or the HRE.

Table L.2 runs the same regressions as in Table L.1 but using border frequency 1300-1800
instead of the benchmark 1500-2000 measure, and also redefines the HRE to be based on the
period 1300-1800. The results do not change much. However, the effect of borders 1300-1800
on population density in 1800 in Panel E is still positive and significant at the 5% level when
we drop Western Europe. In other words, some positive effects of state fragmentation on
population seem to be present even outside the Western core when we focus on preindustrial

(or Malthusian) times.
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M Controlling for preindustrial urbanization and pop-

ulation density

One concern is that the correlation between modern outcomes and border frequency is caused
by some third factor that affected both. For example, Western Europe may be more devel-
oped and have higher population density today because it was already more urbanized and
densely populated in preindustrial times—for reasons not related to factors that we already
control for in our regressions—and this might have caused it to have a more fragmented state
structure.

A similar concern can be raised about the correlation between border frequency and
geography. Rather than geography determining border locations directly, the correlations
between geography and border frequency could be due to geography affecting population
density and urbanization, which in turn could affect state fragmentation, and thus borders.
That is, urbanization and population density could be a channel through which (some of) our
geography variables affect borders. While potentially interesting, this would not necessarily
contradict our model, where cities (capitals) are located at the center of states, i.e., away
from border areas.

We first explore the latter of these two possibilities. Table M.1 presents results from
regressing border frequency on our benchmark set of geography variables and latitude, with
column (1) replicating column (1) of Table 3 in the paper. The remaining seven columns
enter controls for five different measures of preindustrial urbanization (two from Bosker et
al. 2013, and three form HYDE), and two preindustrial population density measures (from
HYDE).* For details about the data sources, see Section I above.

Some correlations do change when we control for log city population from Bosker et al.
(2013) in columns (2) and (3). The coefficient on the 2000-meter mountain dummy turns
negative, and that on log distance to the coast turns positive, i.e., the opposite of the result
in column (1). The reason seems to be a sample composition effect: among the 644 cells
with Bosker data available, border frequency shows negative partial correlation with the
2000-meter mountain dummy, and positive partial correlation with log distance to coast;
the coefficients are approximately —0.04 and 0.2, respectively. The coefficients on the other
geography variables are relatively unchanged when comparing column (1) to columns (2)
and (3).

In columns (4)-(8) of Table M.1, where we use the HYDE variables as controls, the

results are almost identical to those in column (1). Using these controls is arguable more

4Although we use the fraction urban 1500-2000 from HYDE as a control in some regressions, we refer to
all these controls as preindustrial for short. The periods are somewhat arbitrarily chosen, but the results are

not very sensitive to these choices.
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informative, given that the samples are larger and closer to the benchmark. The overall
conclusion should thus be that the effect of geography on borders does not work primarily
through population density or urbanization.

The other concern discussed above was that the correlation between modern outcomes
and border frequency could be driven by variation in preindustrial urbanization or popula-
tion density. Tables M.2-M.4 regress night lights and population density on border frequency
1500-2000, controlling for the same measures of preindustrial population density and urban-
ization as those used in Table M.1. All specifications include our benchmark set of geography
controls and latitude. As expected, all measures of preindustrial population density and ur-
banization correlate with both night lights and population density, but border frequency
still comes out as positive and significant in all specifications. In other words, borders do
seem to have a positive effect on modern development, even when we control for a number

of preindustrial measures of development.

N Measuring borders over other time periods

In the paper we used border frequency from 1500 to 2000 as our benchmark measure. This
section considers border frequency measured over other time periods: 1300-1800 (as some-
times reported already in the paper), 1300-1900, 1300-2000, and 800-2000. We apply the
associated state samples, meaning we only consider cells that had a state present throughout
the period over which we measure borders frequency, i.e., at all turns of the centuries starting
in 1300 (5095 cells), or 800 (3269 cells), respectively.

Table N.1 shows the results when regressing different measures of border frequency on
latitude and the benchmark set of geography controls, alternating between the 1000- and
2000-meter mountain dummies. Columns (1) and (2) of Table N.1 replicate columns (6) and
(7) of Table 3 in the paper.

The other estimated coefficients in Table N.1 are similar to those in Table 3 in the paper,
but not identical. Log ruggedness comes out as more significant, and log distance to the
coast and the steppe dummy as less significant, when measuring borders from 800 to 2000
in columns (7) and (8). This is to large extent a sample composition effect, driven by cells
which are dropped (i.e., cells gaining statehood between 800 and 1500). The dropped cells
tend to be located in more eastern and inland areas, which have become relatively unified
when states formed there after 800.

For example, we already saw that the benchmark border frequency measure based on the
period 1500-2000 shows negative pairwise correlation with log distance to the coast if we use
the benchmark 1500-2000 state sample (see Table 1 in the paper), which holds also when

controlling for other geography variables (Tables 2-3). However, the pairwise correlation
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between the same two variables turns negative in the 800-2000 state sample.

Table N.2 reports results from the same regressions as in Table N.1, but with all bor-
der and geography variables expressed in local deviations from neighboring cells. Columns
(1) and (2) replicate columns (6) and (7) of Table 4 in the paper. The estimates in the
other columns are very similar. In other words, the local correlations between borders and
geography do not seem sensitive to the period considered.

Finally, Tables N.3 and N.4 show the global and local correlations between borders
and modern outcomes, using the same alternative periods for measuring border frequency.
Columns (1) and (5) of Table N.3 replicate the two panels for column (6) of Table 5 in the
paper, while columns (1) and (5) of Table N.4 replicate the two panels in column (6) of
Table 6. The remaining results in Tables N.3 and N.4 closely resemble those in the paper.
The global correlations in Table N.3 are positive and the local correlations in Table N.4 are

negative, just as in Tables 5 and 6, respectively.
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Table D.2: Cross-correlation table

Variables

LPD-HYDE 1500

LPD-HYDE 1800 LPD-HYDE 2000 LPD GPW

LPD-HYDE 1500

LPD-HYDE 1800

LPD-HYDE 2000

LPD GPW

1.000

0.928
(0.000)
0.751
(0.000)
0.702
(0.000)

1.000

0.835 1.000

(0.000)

0.731 0.868 1.000
(0.000) (0.000)

Notes: Unconditional pairwise correlation coefficients between different measures of modern and
preindustrial population densities, from HYDE and the Gridded Population of the World, with p-
values in parentheses. LPD-GPW is the benchmark measure used in the paper, i.e., Log Population
Density from the Gridded Population of the World, and refer to the period 2000-2015. LPD-HYDE
is Log Population Density from HYDE for 1500, 1800, and 2000. The number of cells is 5150.
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Table E.1: Motivation of the choice of geography variables.

Variable(s)

‘ Examples, comments

Related literature

Mountains>2000,1000m;
Log ruggedness

The Pyrenees between France, Spain,
and Andorra, the Alps between, e.g.,
Italy and Austria, the Himalayas
(McMahon Line) between China/Tibet
and India. The Jinshanling segment of
the Great Wall of China is located in

mountainous terrain

Holdich (1916), Brigham
(1919), Diamond (1997,
pp.  414-415),
(1972, pp. 86-89)

Pounds

River dummy

The Rhine between France and Ger-
many, the Shatt al-Arab river between
Iran and Iraq, the Amur and Ussuri

rivers between Russia and China

Pounds (1972, pp. 88-92),
Lord Curzon of Keddle-
ston (1907)

Agricultural  suitability:

rainfed and irrigated

Farming can affect population density,
state development. First states pre-
ceded by Neolithic Revolution. Irriga-
tion crucial for state development in the
Middle East (and democracy in modern
times); likely to affect territorial expan-

sion of states

Wittfogel (1957), Hi-
bbs and Olsson (2004),
Bentzen et al. (2017)

Rainfall

Found to be highly correlated with lin-
guistic diversity. Proxy for deserts, arid
regions, cattle farming. Helps pick up
variation not fully absorbed by related
variables: e.g., rainfed/irrig. agricul-
ture, mountains, coasts (higher rainfall

in mountains, along Atlantic coast)

Nettle (1996, 1998,
1999), Umesao (2003),
Michalopoulos (2012)

Log dist. to coast; Coast
dummy

Europe’s indented coastline relative to
China’s; some states are islands (Eng-
land, Ireland, Japan)

Cosandey (1997, Ch. 6),
Diamond (1997, pp. 414-
415), Hoffman (2015, Ch.
0

Log dist.
Steppe dummy

to steppe;

State development in China linked
to Mongol invasions from the steppe;
larger states in Asia and Eastern Eu-
rope than in Western Europe (e.g., Rus-

sia, Ukraine)

Barfield (1989), Turchin
(2009), Ko et al. (2018)
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Table E.2: Cross-correlation table

Variables Border freq. Log elevation Log rugg. (KL) Log rugg. (NP)

Border freq. 1.000

Log elevation 0.119 1.000
(0.000)

Log rugg. (KL) 0.147 0.812 1.000
(0.000) (0.000)

Log rugg. (NP) 0.140 0.752 0.928 1.000
(0.000) (0.000) (0.000)

Notes: Unconditional pairwise correlation coefficients between border frequency 1500-2000
and different measures of elevation and ruggedness, with p-values in parentheses. Measures
of log ruggedness based on the standard deviation of elevation, and used in the paper, are
indicated by KL. Those based on the method used by Nunn and Puga (2012) are indicated
by NP.
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Table E.4:

Geography and border frequency: coal, temperature, and fraction lake.

Dependent variable: Border frequency 1500-2000

(1) (2) (3) (4) () (6) (7) (8)
Coal dummy 0.053*** 0.050*** 0.009 0.009
(0.018) (0.018) (0.017) (0.017)
Temperature —0.009*** —0.009*** —0.002 —0.002
(0.003) (0.003) (0.003) (0.003)
Fraction lake —0.148* —0.115 —0.024 —0.022
(0.087) (0.088) (0.083) (0.083)
Mountain >2000m 0.146*** 0.137*** 0.146*** 0.136***
(0.043) (0.045) (0.043) (0.045)
Log ruggedness 0.007 0.005 0.007 0.005
(0.006) (0.006) (0.006) (0.006)
River dummy 0.075"** 0.075"** 0.075*** 0.075***
(0.011) (0.011) (0.011) (0.011)
Ag. suit. rainfed 0.124*** 0.121*** 0.124*** 0.121%**
(0.031) (0.032) (0.031) (0.032)
Ag. suit. irrig. —0.100***  —0.098***  —0.100***  —0.098***
(0.021) (0.020) (0.021) (0.021)
Rainfall 0.063*** 0.064*** 0.064*** 0.063***
(0.013) (0.012) (0.012) (0.013)
Log dist. to coast —0.104***  —0.106*** —0.104*** —0.106***
(0.036) (0.035) (0.036) (0.035)
Coast dummy —0.064*** —0.062*** —0.064"** —0.062***
(0.014) (0.015) (0.014) (0.014)
Log dist. to steppe 0.166*** 0.173*** 0.168*** 0.171%**
(0.032) (0.033) (0.032) (0.033)
Steppe dummy 0.045*** 0.047*** 0.045*** 0.046***
(0.017) (0.017) (0.017) (0.017)
Log land area 0.027*** 0.021*** 0.028*** 0.020*** 0.012%** 0.012%** 0.012*** 0.012%**
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004)
R2 0.03 0.03 0.02 0.04 0.15 0.15 0.15 0.15
Number of obs. 5202 5202 5202 5202 5202 5202 5202 5202

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications include latitude controls (not reported). * indicates p <0.10,
** p <0.05, and *** p <0.01.
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Table E.6: Geography and border frequency: alternative measures of rivers and coasts.

Dependent variable: Border frequency 1500-2000

(1) 2) (3) (4) (5) (6)
Mountain >2000m 0.129*** 0.137*** 0.129%** 0.146*** 0.153*** 0.145%**
(0.042) (0.042) (0.042) (0.043) (0.043) (0.043)
Log ruggedness 0.017*** 0.019*** 0.017*** 0.007 0.010* 0.007
(0.005) (0.006) (0.005) (0.006) (0.006) (0.006)
River dummy 0.078*** 0.075%**
(0.011) (0.011)
River density 1.933*** 1.840%**
(0.670) (0.660)
Log river length 0.021*** 0.020***
(0.003) (0.003)
Ag. suit. rainfed 0.074*** 0.094*** 0.073*** 0.124*** 0.140*** 0.122%**
(0.027) (0.028) (0.027) (0.031) (0.032) (0.031)
Ag. suit. irrig. —0.102***  —0.101*** —0.103*** —0.100*** —0.099*** —0.101***
(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
Rainfall 0.049*** 0.048*** 0.051*** 0.064*** 0.061*** 0.065***
(0.012) (0.012) (0.012) (0.012) (0.013) (0.012)
Log dist. to coast —0.108***  —0.046 —0.104***  —0.104*** —0.037 —0.099***
(0.037) (0.035) (0.037) (0.036) (0.034) (0.036)
Coast dummy —0.059*** —0.064***
(0.014) (0.014)
Coastline density 0.035*** 0.023*
(0.013) (0.013)
Log coastline length —0.014*** —0.015***
(0.003) (0.003)
Log dist. to steppe 0.103*** 0.110*** 0.104*** 0.168*** 0.168*** 0.167**
(0.028) (0.029) (0.028) (0.032) (0.032) (0.032)
Steppe dummy 0.027* 0.032*%* 0.027* 0.045*** 0.048*** 0.044**
(0.016) (0.016) (0.016) (0.017) (0.017) (0.017)
Log land area 0.014*** 0.036*** 0.017*** 0.012*** 0.032*** 0.015%**
(0.004) (0.006) (0.004) (0.004) (0.006) (0.004)
R? 0.14 0.13 0.14 0.15 0.13 0.15
Number of obs. 5202 5202 5202 5202 5202 5202
Latitude control No No No Yes Yes Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming
spatial autocorrelation among observations within 1.45 degrees of each other. * indicates p <0.10,
** 5 <0.05, and *** p <0.01.
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Table E.7: Geography and border frequency: logged and non-logged variables.

Dependent variable: Border frequency 1500-2000

(1) () (3) (4)
Mountain >2000m 0.146*** 0.140*** 0.113*** 0.133***
(0.043) (0.043) (0.041) (0.045)
Log ruggedness 0.007 0.006 0.012*
(0.006) (0.006) (0.006)
Ruggedness 0.000***
(0.000)
River dummy 0.075%** 0.075** 0.076*** 0.078***
(0.011) (0.011) (0.011) (0.011)
Ag. suit. rainfed 0.124*** 0.130*** 0.132%** 0.088***
(0.031) (0.032) (0.031) (0.031)
Ag. suit. irrig. —0.100*** —0.097*** —0.092*** —0.108***
(0.021) (0.021) (0.020) (0.021)
Rainfall 0.064*** 0.065*** 0.056™**
(0.012) (0.013) (0.012)
Log rainfall 0.054***
(0.007)
Log dist. to coast —0.104*** —0.113***
(0.036) (0.035)
Distance to coast —0.077*** —0.068***
(0.023) (0.022)
Coast dummy —0.064*** —0.064*** —0.061*** —0.064***
(0.014) (0.014) (0.014) (0.014)
Log dist. to steppe 0.168*** 0.219***
(0.032) (0.033)
Distance to steppe 0.197*** 0.210***
(0.041) (0.040)
Steppe dummy 0.045*** 0.031* 0.033** 0.024
(0.017) (0.016) (0.016) (0.017)
Log land area 0.012%** 0.011*** 0.009** 0.015%**
(0.004) (0.004) (0.004) (0.004)
R? 0.15 0.15 0.15 0.15
Number of obs. 5202 5202 5202 5202
Logged or Non-logged = Benchmark
Non-logged . .
non-logged Benchmark Jistances distances with logged
alteration & ruggedness rainfall

Notes: Ordinary least squares regressions with Conley standard errors in parenthe-
ses assuming spatial autocorrelation among observations within 1.45 degrees of each
other. All specifications include latitude controls (not reported). * indicates p <0.10,
** p <0.05, and *** p <0.01.
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Table F.1: Geography and border frequency: standardized coefficients and robust standard

CITrors.
Dependent variable: Border frequency 1500-2000
(1) (2) (3) (4) (5) (6)
Mountain >2000m 0.074*** 0.084*** 0.092%**
(0.030) (0.030) (0.029)
Mountain >1000m 0.030* 0.038** 0.080***
(0.013) (0.013) (0.013)
Log ruggedness 0.090*** 0.090*** 0.039** 0.040** 0.089*** 0.078***
(0.003)  (0.003)  (0.003)  (0.004) (0.004) (0.004)
River dummy 0.148*** 0.148*** 0.142%** 0.142%** 0.125*** 0.124***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Ag. suit. rainfed 0.085*** 0.079*** 0.142%** 0.132%** 0.023 0.016
(0.015)  (0.016)  (0.018)  (0.018) (0.018) (0.018)
Ag. suit. irrig. —0.124***  —0.123*** —0.122*** —0.120*** —0.123*** —0.116***
(0.012)  (0.012)  (0.012)  (0.012) (0.012) (0.012)
Rainfall 0.176%** 0.179*** 0.228*** 0.227%** 0.080*** 0.078***
(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)
Log dist. to coast —0.084***  —0.080*** —0.081*** —0.077*** —0.044** —0.040**
(0.019) (0.019) (0.018) (0.018) (0.022) (0.022)
Coast dummy —0.108***  —0.108*** —0.118*** —0.116*** —0.091*** —0.079***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Log dist. to steppe 0.134*** 0.129*** 0.219*** 0.208*** 0.394*** 0.388***
(0.015)  (0.015)  (0.017)  (0.017) (0.022) (0.021)
Steppe dummy 0.034*** 0.031*** 0.057*** 0.052*** 0.060*** 0.056***
(0.009) (0.009) (0.010) (0.010) (0.011) (0.011)
Log land area 0.058*** 0.058*** 0.049*** 0.049*** 0.050*** 0.051***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
R? 0.14 0.14 0.15 0.15 0.24 0.24
Number of obs. 5202 5202 5202 5202 5202 5202
Latitude (Control/FE) None None Control Control  Fixed effects Fixed effects
Summed absolute 1.057 0.997 1.232 1.152 1.121 1.055

values of coefficients

Notes: Ordinary least squares regressions with standardized (beta) coefficients and robust standard errors.
* indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table G.1: Geography and border frequency: nine-cell artificial country fixed effects.

Dependent variable:

Border frequency 1500-2000

Border freq.

1300-1800
(1) (2) (3) (4) (5) (6) (7)
Mountain >2000m 0.043 0.046 0.017 0.016 0.037
(0.032) (0.031) (0.027) (0.026) (0.023)
Mountain >1000m 0.047*** 0.044**
(0.018) (0.019)
Log ruggedness 0.024*** 0.022*** 0.026*** 0.022*** 0.020*** 0.018*** 0.016***
(0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006)
River dummy 0.027*** 0.027*** 0.030*** 0.026*** 0.027*** 0.024*** 0.025***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Ag. suit. rainfed —0.062* —0.057* —0.082** —0.087** —0.084** —0.080** —0.075**
(0.036)  (0.034)  (0.035)  (0.034)  (0.036)  (0.036)  (0.034)
Ag. suit. irrig. —0.006 —0.002 —0.006 0.001 0.011 —0.013 —0.009
(0.018) (0.018) (0.018) (0.017) (0.018) (0.019) (0.019)
Rainfall 0.060*** 0.063*** 0.060*** 0.023 0.046** 0.064*** 0.067***
(0.018)  (0.018)  (0.018)  (0.015)  (0.019)  (0.019)  (0.019)
Log dist. to coast 0.033 0.019 0.017 —0.124 —0.046 —0.007 —0.021
(0.114)  (0.114)  (0.113)  (0.111)  (0.109)  (0.126)  (0.125)
Coast dummy 0.001 0.005 0.002 —0.010 —0.005 —0.011 —0.008
(0.012)  (0.012)  (0.012)  (0.012)  (0.012)  (0.014)  (0.014)
Log dist. to steppe —0.074 —0.090 —0.055 —0.089 —0.084 —0.027 —0.044
(0.128)  (0.128)  (0.166)  (0.125)  (0.126)  (0.132)  (0.131)
Steppe dummy —0.044**  —0.041**  —0.053*** —0.038**  —0.052*** —0.047*** —0.043***
(0.017) (0.017) (0.017) (0.015) (0.017) (0.017) (0.016)
Log land area 0.009** 0.009** 0.010** 0.012%** 0.007* 0.025*** 0.025***
(0.004)  (0.004)  (0.004)  (0.004)  (0.004)  (0.005)  (0.005)
R? 0.61 0.61 0.61 0.50 0.47 0.65 0.66
Number of obs. 5202 5202 5202 4566 4664 5095 5095
Artificial country FE Yes Yes Yes Yes Yes Yes Yes
Latitude (Control/FE)  Control Control FE Control Control Control Control
Drop Western Europe No No No Yes No No No
Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocor-
relation among observations within 1.45 degrees of each other. The specifications are the same as in Table 3 in
the paper, except that they all include fixed effects for artificial regions of nine cells. * indicates p <0.10, **
p <0.05, and *** p <0.01.
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Table G.2: Borders and modern outcomes: nine-cell artificial country fixed effects.

Panel A Dependent variable: Log night lights
(1) (2) (3) (4) () (6) (7)
Border frequency 1500-2000 —0.158***  —0.134*** —0.136*** —0.255"** —0.188***
(0.055) (0.051) (0.049) (0.061) (0.061)
Border frequency 1300-1800 —0.112**  —0.114**
(0.048) (0.047)
R2 0.70 0.74 0.75 0.73 0.72 0.74 0.75
Number of obs. 5202 5202 5202 4566 4664 5095 5095
Panel B Dependent variable: Log population density
Border frequency 1500-2000 —0.255***  —0.228*** —0.238*** —0.356"** —0.307***
(0.083) (0.076) (0.074) (0.088) (0.091)
Border frequency 1300-1800 —0.192***  —0.208"***
(0.070) (0.068)
R? 0.71 0.74 0.75 0.75 0.74 0.73 0.74
Number of obs. 5201 5201 5201 4565 4663 5094 5094
Artificial country FE Yes Yes Yes Yes Yes Yes Yes
Geography controls No Yes Yes Yes Yes Yes Yes
Latitude (Control/FE) None Control FE Control Control Control FE
Drop Western Europe No No No Yes No No No
Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation

among observations within 1.45 degrees of each other. The specifications are the same as in Table 5 in the paper,

except that they all include fixed effects for artificial regions of nine cells. * indicates p <0.10, ** p <0.05, and ***

p <0.01.
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Table H.1:

Geography and border frequency: modern country fixed effects.

Dependent variable:

Border frequency 1500-2000

Border freq.

1300-1800
(1) () 3) (4) (5) (6) )
Mountain >2000m 0.016 0.019 0.020 0.016 0.018
(0.018) (0.019) (0.017) (0.016) (0.020)
Mountain >1000m 0.035*** 0.048"*
(0.011) (0.015)
Log ruggedness 0.012%** 0.010** 0.017*** 0.007* 0.008** 0.017*** 0.014**
(0.004) (0.004) (0.004) (0.004) (0.004) (0.006) (0.006)
River dummy 0.019*** 0.020*** 0.019*** 0.021*** 0.016*** 0.026*** 0.026***
(0.005) (0.005) (0.005) (0.006) (0.005) (0.007) (0.007)
Ag. suit. rainfed 0.023 0.029 0.016 0.016 0.014 0.022 0.031
(0.019) (0.018) (0.019) (0.020) (0.019) (0.025) (0.024)
Ag. suit. irrig. —0.019 —0.017 —0.029*** —0.018 —0.022**  —0.003 0.001
(0.012) (0.012) (0.011) (0.012) (0.011) (0.015) (0.015)
Rainfall 0.019*** 0.021*** 0.001 0.012 0.001 0.036*** 0.039***
(0.007) (0.007) (0.007) (0.007) (0.005) (0.011) (0.011)
Log dist. to coast —0.035 —0.038 —0.030 —0.066**  —0.051**  —0.078* —0.083**
(0.028) (0.028) (0.034) (0.027) (0.025) (0.040) (0.040)
Coast dummy —0.019**  —0.014* —0.014* —0.014 —0.002 —0.035***  —0.029**
(0.008) (0.008) (0.008) (0.009) (0.007) (0.012) (0.012)
Log dist. to steppe 0.055** 0.061*** 0.158*** 0.033 0.007 0.135*** 0.145***
(0.023) (0.023) (0.040) (0.022) (0.020) (0.032) (0.032)
Steppe dummy 0.008 0.011 0.007 0.000 —0.012 0.030*** 0.034***
(0.009) (0.009) (0.009) (0.009) (0.008) (0.011) (0.011)
Log land area 0.005* 0.005* 0.002 0.008*** 0.004* 0.013*** 0.013***
(0.003) (0.003) (0.003) (0.003) (0.002) (0.004) (0.004)
R2 0.73 0.73 0.74 0.61 0.67 0.63 0.64
Number of obs. 5199 5199 5199 4563 4661 5092 5092
Modern country FE Yes Yes Yes Yes Yes Yes Yes
Latitude (Control/FE)  Control Control FE Control Control Control Control
Drop Western Europe No No No Yes No No No
Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocor-

relation among observations within 1.45 degrees of each other. The specifications are the same as in Table 3 in

the paper, except that they all include fixed effects for modern countries from GADM. * indicates p <0.10, **
p <0.05, and *** p <0.01.

37



Table H.2: Borders and modern outcomes: modern country fixed effects.

Panel A Dependent variable: Log night lights
(1) (2) (3) (4) () (6) (7)
Border frequency 1500-2000 0.024 0.074 —0.047 0.009 0.034
(0.086) (0.084) (0.083) (0.096) (0.099)
Border frequency 1300-1800 —0.021 —0.092
(0.066) (0.065)
R2 0.44 0.54 0.58 0.51 0.50 0.54 0.57
Number of obs. 5199 5199 5199 4563 4661 5092 5092
Panel B Dependent variable: Log population density
Border frequency 1500-2000 —-0.013 0.130 —0.078 0.101 0.130
(0.128) (0.122) (0.118) (0.138) (0.144)
Border frequency 1300-1800 0.033 —0.103
(0.095) (0.092)
R? 0.40 0.51 0.55 0.50 0.49 0.50 0.54
Number of obs. 5198 5198 5198 4562 4660 5091 5091
Modern country FE Yes Yes Yes Yes Yes Yes Yes
Geography controls No Yes Yes Yes Yes Yes Yes
Latitude (Control/FE) None Control FE Control Control Control FE
Drop Western Europe No No No Yes No No No
Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation
among observations within 1.45 degrees of each other. The specifications are the same as in Table 5 in the paper,
except that they all include fixed effects for modern countries from GADM. * indicates p <0.10, ** p <0.05, and ***
p <0.01.
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Table I.1: Borders and urbanization: the period 1300-1800.

Dependent variable: Log urban population,

(1) 2) (3) (4) (5) (6)
Log urban pop.;_1 0.714*** 0.712%** 0.713*** 0.231*** 0.234*** 0.231***
(0.012) (0.012) (0.012) (0.027) (0.027) (0.027)
Border dummyy —0.105** —0.225*** —0.326*** —0.325***
(0.046) (0.059) (0.070) (0.070)
Border dummy;_; 0.063 0.192%** —0.027 —0.019
(0.044) (0.056) (0.068) (0.067)
R? 0.61 0.61 0.61 0.73 0.73 0.73
Number of obs. 3220 3220 3220 3220 3220 3220
Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with
644 cells and six centuries (1300-1800); the first century is dropped due to the lagged variables. Log urban
population is from Bosker et al. (2013), and measures the log population of all cities in a cell that exceed 10,000
people. Columns (1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell
and century fixed effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table 1.2: Borders and urbanization: the period 800-1800.

Dependent variable: Log urban population,

(1) 2) ®3) (4) (5) (6)
Log urban pop.;—1 0.795*** 0.795*** 0.795%** 0.516*** 0.515%** 0.516***
(0.008) (0.009) (0.008) (0.018) (0.018) (0.018)
Border dummyy —0.062** —0.102*** —0.091*** —0.109***
(0.030) (0.034) (0.034) (0.036)
Border dummy;_; 0.024 0.077** 0.023 0.057
(0.030) (0.035) (0.034) (0.036)
R2 0.68 0.68 0.68 0.73 0.73 0.73
Number of obs. 5980 5980 5980 5980 5980 5980
Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with
598 cells and eleven centuries (800-1800); the first century is dropped due to the lagged variables. Log urban
population is from Bosker et al. (2013), and measures the log population of all cities in a cell that exceed 10,000

people. Columns (1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell
and century fixed effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table 1.3: Borders and urbanization: fraction urban from HYDE.

Dependent variable: Fraction urbang

(1) 2) (3) (4) (5) (6)
Fraction urban;_; 1.025*** 1.025*** 1.024*** 0.802*** 0.804*** 0.802***
(0.007) (0.007) (0.007) (0.012) (0.012) (0.012)
Border dummyy —0.003 —0.006** —0.011*** —0.011***
(0.002) (0.003) (0.003) (0.003)
Border dummy;_; 0.003* 0.006*** 0.002 0.002
(0.002) (0.002) (0.003) (0.003)
R? 0.81 0.81 0.81 0.85 0.85 0.85
Number of obs. 25125 25125 25125 25125 25125 25125
Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with 5025
cells and six centuries (1500-2000); the first century is dropped due to the lagged variables. The fraction urban
is based data from HYDE, and defined as urban population as a fraction of total population in a cell. Columns
(1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell and century fixed
effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table K.1: Borders and geography: using Abramson data.

Dependent variable: Border frequency 1500-1790/1800

(1) (2) 3) (4) (5) (6)
Mountain >2000m 0.146*** 0.424*** 0.256** 0.160*** 0.362*** 0.161*
(0.040) (0.089) (0.119) (0.038) (0.097) (0.096)
Log ruggedness 0.005 —0.018 —0.023** 0.019*** 0.020* 0.020*
(0.007) (0.011) (0.011) (0.007) (0.010) (0.011)
River dummy 0.077*** 0.076*** 0.096*** 0.069*** 0.068*** 0.082***
(0.012) (0.014) (0.016) (0.011) (0.014) (0.014)
Ag. suit. rainfed 0.151*** 0.085* 0.115** 0.027 —0.042 —0.037
(0.036) (0.045) (0.048) (0.034) (0.045) (0.048)
Ag. suit. irrig. —0.120*** —0.154*** —0.142*** —0.122*** —0.121*** —0.099***
(0.025) (0.029) (0.031) (0.026) (0.029) (0.032)
Rainfall 0.071*** 0.073*** 0.083*** 0.026* 0.025 0.028
(0.014) (0.018) (0.019) (0.014) (0.017) (0.017)
Log dist. to coast —0.135%** —0.014 —0.050 —0.100** —0.076 —0.099
(0.043) (0.065) (0.065) (0.048) (0.064) (0.073)
Coast dummy —0.068*** —0.086*** —0.101*** —0.052*%** —0.070*** —0.082***
(0.017) (0.021) (0.023) (0.016) (0.020) (0.021)
Log dist. to steppe 0.228*** 0.368*** 0.342%** 0.362*** 0.403*** 0.382***
(0.041) (0.067) (0.060) (0.055) (0.065) (0.067)
Steppe dummy 0.049*** 0.034 0.043 0.053*** 0.017 0.018
(0.017) (0.027) (0.031) (0.018) (0.028) (0.033)
Log land area 0.013** 0.032*** 0.033*** 0.013** 0.020** 0.021**
(0.005) (0.008) (0.008) (0.005) (0.008) (0.008)
R? 0.15 0.16 0.15 0.24 0.26 0.25
Number of obs. 5202 3861 3861 5202 3861 3861
Border variable Euratlas Euratlas Abramson Euratlas Euratlas Abramson
Sample Euratlas Abramson Abramson Euratlas Abramson Abramson
Latitude (Control/FE) Control Control Control FE FE FE

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-

correlation among observations within 1.45 degrees of each other. The dependent variable is border frequency
1500-1800, or 1500-1790, for the Euratlas and Abramson data, respectively. Columns (2) and (5) use border
frequency based on Euratlas, but restricts the sample to cells where Abramson data are not missing. * indicates
p <0.10, ** p <0.05, and *** p <0.01.
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Table K.2: Borders and modern outcomes: using Abramson data.

Dependent variable:

Log night lights Log population density
(1) (2) 3) (4) (5) (6)
Border frequency 1500-1790/1800 0.557*** 0.552%** 0.607*** 0.846*** 0.746*** 0.800***
(0.079) (0.082) (0.074) (0.117) (0.115) (0.106)
R? 0.33 0.28 0.29 0.32 0.31 0.32
Number of obs. 5202 3861 3861 5201 3860 3860
Border variable Euratlas Euratlas Abramson Euratlas Euratlas Abramson
Sample Euratlas Abramson Abramson Furatlas Abramson Abramson

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation
among observations within 1.45 degrees of each other. All specifications include the benchmark set of geography controls and
latitude (not reported). The independent variable of interest is border frequency 1500-1800, or 1500-1790, for the Euratlas
and Abramson data, respectively. Columns (2) and (5) use border frequency based on Euratlas, but restricts the sample to

cells where Abramson data are not missing. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table K.3: Border frequency inside and outside the HRE in the Euratlas and Abramson
data.

Ratio border frequency
Inside the HRE Outside the HRE inside the HRE

to outside the HRE

Euratlas Abramson Euratlas Abramson Euratlas Abramson
Numb
e 538 535 4664 3326
of cells
B
order 0.65 0.69 0.08 0.09 8.12 7.67
frequency

Notes: Average border frequency among cells located inside and outside the Holy Roman Empire, ac-
cording to the Euratlas and Abramson data. Border frequency is measured over the period 1500-1800
for the Euratlas data and 1500-1790 for the Abramson data. Cells inside the HRE are those that were
ever covered by the HRE in any century 1500-1800 according to the Euratlas data.
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Table L.1: Borders and modern outcomes: other outcome variables.

Panel A Dependent variable: log night lights (per area)
(1) (2) ®3) (4) ()
Border frequency 1500-2000 0.680*** 0.513*** 0.210***  —0.045 —0.184**
(0.097) (0.093) (0.075) (0.101) (0.088)
R2 0.03 0.32 0.40 0.30 0.33
Number of obs. 5202 5202 5202 4566 4664

Panel B

Dependent variable: log population density

Border frequency 1500-2000

R2

Number of obs.

LI57™*  0.853"*  0.323"*  0.261* 0.080
(0.134) (0.137) (0.107)  (0.147) (0.140)
0.03 0.31 0.43 0.33 0.32
5201 5201 5201 4565 4663

Panel C

Dependent variable: log GDP per capita

Border frequency 1500-2000

R2
Number of obs.

0.509**  0.257*  0.129%  —0.264"* —0.351"**
(0.104)  (0.078)  (0.072)  (0.090)  (0.098)

0.01 0.26 0.30 0.24 0.25
4949 4949 4949 4314 4411

Panel D

Dependent variable: log GDP per area

Border frequency 1500-2000

R2
Number of obs.

0.524*** 0518  0.348** —0.131  —0.253"
(0.119) (0.129) (0.113)  (0.142) (0.138)

0.01 0.14 0.23 0.15 0.15
4993 4993 4993 4358 4455

Panel E

Dependent variable: log population density in 1800

Border frequency 1500-2000

1.275%*  0.655***  0.173**  0.143  —0.078
(0.117) (0.108) (0.073)  (0.112) (0.104)

R? 0.07 0.48 0.59 0.45 0.48

Number of obs. 5150 5150 5150 4517 4612
Geography controls No Yes Yes Yes Yes
Latitude (Control/FE) None Control FE Control Control
Drop Western Europe No No No Yes No
Drop HRE No No No No Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming

spatial autocorrelation among observations within 1.45 degrees of each other. The specifications in

Panels A and B are identical to the first five columns of Table 5 in the paper. * indicates p <0.10,

** p <0.05, and **¥* p <0.01.
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Table L.2: Borders and modern outcomes: other outcome variables and using borders
1300-1800.

Panel A Dependent variable: log night lights (per area)
(1) (2) 3) (4) ()
Border frequency 1300-1800 0.683*** 0.483*** 0.252***  —0.053 —0.254***
(0.085)  (0.085)  (0.070)  (0.100)  (0.091)
R2 0.04 0.31 0.39 0.29 0.31
Number of obs. 5095 5095 5095 4459 4522

Panel B

Dependent variable: log population density

Border frequency 1300-1800

R2

Number of obs.

10217 0.770***  0.311*** 0152  —0.071
(0.119) (0.126) (0.098) (0.137) (0.138)
0.04 0.30 0.42 0.31 0.31
5094 5094 5094 4458 4521

Panel C

Dependent variable: log GDP per capita

Border frequency 1300-1800

R2

Number of obs.

0.664***  0.324**  0.251"** —0.141*  —0.283***
(0.082) (0.068) (0.065) (0.082) (0.093)
0.03 0.28 0.31 0.25 0.26
4872 4872 4872 4237 4299

Panel D

Dependent variable: log GDP per area

Border frequency 1300-1800

R2

Number of obs.

0.4727 0488  0.350*** —0.151 —0.344**
(0.106) (0.123) (0.113) (0.142) (0.144)
0.01 0.14 0.23 0.16 0.16
4908 4908 4908 4273 4335

Panel E

Dependent variable: log population density in 1800

Border frequency 1300-1800

1306 0.688***  0.270***  0.217**  —0.039
(0.097) (0.098) (0.069) (0.107) (0.108)

R? 0.10 0.48 0.58 0.44 0.47

Number of obs. 5046 5046 5046 4413 4473
Geography controls No Yes Yes Yes Yes
Latitude (Control/FE) None Control FE Control Control
Drop Western Europe No No No Yes No
Drop HRE No No No No Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming

spatial autocorrelation among observations within 1.45 degrees of each other. The specifications
in Panels A and B of columns (2) and (3) are identical to columns (6) and (7) of Table 5 in the
paper. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table M.1: Borders and geography: controlling for preindustrial population density and

urbanization.

Dependent variable: border frequency 1500-2000

(1) 2) () (4) (5) (6) (7) (8)
Mountain >2000m 0.146* —0.101 —0.092 0.148*** 0.147*** 0.149*** 0.147*** 0.157***
(0.043) (0.071) (0.073) (0.043) (0.043) (0.043) (0.044) (0.044)
Log ruggedness 0.007 0.002 0.003 0.006 0.006 0.006 0.003 0.006
(0.006) (0.013) (0.013) (0.006) (0.006) (0.006) (0.006) (0.006)
River dummy 0.075*** 0.089*** 0.085*** 0.071*** 0.073*** 0.069*** 0.060*** 0.053***
(0.011) (0.024) (0.025) (0.011) (0.011) (0.011) (0.011) (0.011)
Ag. suit. rainfed 0.124*** 0.193** 0.199** 0.121%** 0.123*** 0.125*** 0.080*** 0.074**
(0.031) (0.080) (0.079) (0.032) (0.032) (0.032) (0.030) (0.030)
Ag. suit. irrig. —-0.100*** —0.117**  —0.120**  —0.105"** —0.103*** —0.107"** —0.125*** —0.138***
(0.021) (0.055) (0.055) (0.021) (0.021) (0.021) (0.022) (0.022)
Rainfall 0.064*** 0.111*** 0.113*** 0.065*** 0.066*** 0.065*** 0.054*** 0.046***
(0.012) (0.032) (0.032) (0.013) (0.013) (0.013) (0.013) (0.013)
Log dist. to coast —0.104*** 0.004 0.017 —0.093**  —0.096*** —0.092**  —0.059* —0.039
(0.036) (0.166) (0.164) (0.037) (0.037) (0.037) (0.036) (0.036)
Coast dummy —0.064***  —0.064* —0.061* —-0.066***  —0.064*** —0.065"** —0.075*** —0.076***
(0.014) (0.035) (0.034) (0.015) (0.014) (0.014) (0.014) (0.014)
Log dist. to steppe 0.168*** 0.462*** 0.456*** 0.176*** 0.177*** 0.177*** 0.159*** 0.132***
(0.032) (0.100) (0.100) (0.033) (0.034) (0.034) (0.031) (0.029)
Steppe dummy 0.045*** 0.111*** 0.112%** 0.044** 0.045*** 0.045** 0.043** 0.046***
(0.017) (0.040) (0.039) (0.018) (0.018) (0.018) (0.017) (0.017)
Log land area 0.012***  —0.024 —0.027 0.015** 0.015** 0.016***  —0.006 0.011**
(0.004) (0.025) (0.025) (0.006) (0.006) (0.006) (0.006) (0.005)
Log city pop. 1500-1800 —0.011
(0.009)
Log city pop. in 1500 0.006
(0.007)
Fraction urban 1500-2000 0.039
(0.031)
Fraction urban 1500-1800 0.024
(0.037)
Fraction urban 1500 0.090**
(0.040)
Log pop. dens. 1500-1800 0.021***
(0.004)
Log pop. dens. in 1500 0.049***
(0.008)
R2 0.15 0.23 0.23 0.15 0.15 0.15 0.16 0.18
Number of obs. 5202 644 644 5025 5035 5036 5150 5150

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications include latitude controls (not reported). * indicates p <0.10, **

p <0.05, and *** p <0.01.
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Table M.2: Borders and modern outcomes: controlling for preindustrial urbanization from
Bosker et al. (2013).

Dependent variable:

Log night lights Log population density

(1) ) (3) (4) (5) (6)
Border frequency 1500-2000 0.513*** 0.535"** 0.469*** 0.853*** 0.587*** 0.463**

(0.093) (0.151) (0.151) (0.137) (0.223) (0.224)
Log city pop. 1500-1800 0.196*** 0.371***

(0.030) (0.054)
Log city pop. in 1500 0.129*** 0.228***
(0.021) (0.036)

R? 0.32 0.47 0.40 0.44 0.34
Number of obs. 5202 644 644 644 644

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-

correlation among observations within 1.45 degrees of each other. All specifications include controls for the

benchmark set of geography controls and latitude (not reported). * indicates p <0.10, ** p <0.05, and ***

p <0.01.
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Table M.3: Borders and modern outcomes: controlling for preindustrial urbanization from
HYDE.

Panel A Dependent variable: log night lights
(1) (2) (3) (4)
Border frequency 1500-2000 0.513*** 0.448*** 0.479*** 0.450***
(0.093) (0.072) (0.083) (0.086)
Fraction urban 1500-2000 3.074%**
(0.101)
Fraction urban 1500-1800 2.749***
(0.145)
Fraction urban 1500 2.313***
(0.153)
R? 0.32 0.53 0.42 0.38
Number of obs. 5202 5025 5035 5036
Panel B Dependent variable: log population density
Border frequency 1500-2000 0.853*** 0.747*** 0.793*** 0.764***
(0.137) (0.114) (0.127) (0.130)
Fraction urban 1500-2000 3.977**
(0.159)
Fraction urban 1500-1800 3.114***
(0.211)
Fraction urban 1500 2.420%**
(0.218)
R? 0.31 0.44 0.35 0.32
Number of obs. 5201 5025 5035 5036

Notes: Ordinary least squares regressions with Conley standard errors in parenthe-
ses assuming spatial autocorrelation among observations within 1.45 degrees of each
other. All specifications include controls for the benchmark set of geography controls
and latitude (not reported). * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table M.4: Borders and modern outcomes: controlling for preindustrial population density
from HYDE.

Dependent variable:

Log night lights Log population density

(1) () ®3) (4) (5) (6)
Border frequency 1500-2000 0.513*** 0.100* 0.119** 0.853*** 0.236™** 0.265***

(0.093) (0.056) (0.058) (0.137) (0.089) (0.093)
Log pop. density 1500-1800 0.653*** 0.975***

(0.017) (0.032)
Log population density in 1500 0.639*** 0.952%**
(0.018) (0.033)

R? 0.32 0.64 0.60 0.31 0.59 0.56
Number of obs. 5202 5150 5150 5201 5150 5150

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-
correlation among observations within 1.45 degrees of each other. All specifications include controls for the
benchmark set of geography controls and latitude (not reported). * indicates p <0.10, ** p <0.05, and ***
p <0.01.
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Table N.1:

Geography and border frequency: using alternative time periods.

Dependent variable:

Border frequency

Border frequency

Border frequency

Border frequency

1300-1800 1300-1900 1300-2000 800-2000
(1) (2) (3) (4) (5) (6) (7) (8)
Mountain >2000m 0.126"* 0.117"** 0.133"* 0.095"**
(0.038) (0.037) (0.040) (0.033)
Mountain >1000m 0.033 0.034* 0.035* 0.019
(0.021) (0.020) (0.020) (0.015)
Log ruggedness 0.010 0.010 0.011* 0.010 0.011* 0.010 0.016**  0.016***
(0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
River dummy 0.072°*  0.071**  0.071**  0.071***  0.072***  0.072***  0.062"**  0.061"**
(0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Ag. suit. rainfed 0.137°*  0.130**  0.121**  0.115**  0.122**  0.115**  0.114"*  0.106"*
(0.037) (0.037) (0.034) (0.034) (0.033) (0.033) (0.032) (0.032)
Ag. suit. irrig. —0.089"*  —0.087*** —0.079*** —0.076*** —0.081"** —0.078"* —0.095*"* —0.092***
(0.025) (0.025) (0.023) (0.023) (0.021) (0.021) (0.024) (0.024)
Rainfall 0.079"*  0.079**  0.074**  0.074***  0.073***  0.073***  0.060"**  0.059"**
(0.015) (0.015) (0.014) (0.014) (0.014) (0.014) (0.013) (0.013)
Log dist. to coast 0171 0165  —0.151* —0.145"* —0.137** —0.131""*  0.024 0.035
(0.044) (0.044) (0.040) (0.040) (0.038) (0.038) (0.062) (0.063)
Coast dummy —0.080"*  —0.078"** —0.076*** —0.073** —0.073"** —0.071"* —0.044** —(.042***
(0.018) (0.018) (0.016) (0.016) (0.015) (0.015) (0.015) (0.015)
Log dist. to steppe 0.2507*  0.244**  0.224**  0.220**  0.201***  0.195***  0.100"**  0.092"**
(0.040) (0.039) (0.036) (0.035) (0.033) (0.033) (0.034) (0.035)
Steppe dummy 0.0417  0.038**  0.039**  0.036**  0.042*  0.039**  0.028" 0.025
(0.016) (0.016) (0.015) (0.015) (0.016) (0.016) (0.015) (0.015)
Log land area 0.016™*  0.017**  0.014**  0.015**  0.014***  0.015***  0.011"**  0.011***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.004)
R2 0.18 0.18 0.18 0.18 0.18 0.18 0.22 0.22
Number of obs. 5095 5095 5095 5095 5095 5095 3269 3269

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications control for latitude (not reported). * indicates p <0.10, **
p <0.05, and *** p <0.01.
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Table N.2: Geography and border frequency: local deviations using alternative time peri-

ods.

Dependent variable:

A Border freq.

A Border freq.

A Border freq.

A Border freq.

1300-1800 1300-1900 1300-2000 800-2000
1) (2) 3) (4) (5) (6) (7) (8)
A Mountain >2000m 0.051* 0.041 0.054* 0.063**
(0.029) (0.029) (0.031) (0.028)
A Mountain >1000m 0.061*** 0.071*** 0.075*** 0.050***
(0.018) (0.018) (0.017) (0.015)
A Log ruggedness 0.016*** 0.015** 0.018*** 0.017*** 0.020** 0.019*** 0.015*** 0.015***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.006)
A River dummy 0.036*** 0.037*** 0.036*** 0.037*** 0.037*** 0.038*** 0.037*** 0.038***
(0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.009) (0.009)
A Ag. suit. rainfed —0.102***  —0.098***  —0.107*** —0.099*** —0.104*** —0.097*** —0.072**  —0.076**
(0.037) (0.035) (0.036) (0.034) (0.035) (0.033) (0.031) (0.032)
A Ag. suit. irrig. —0.007 —0.001 —0.004 0.003 0.002 0.010 —0.009 0.000
(0.018) (0.018) (0.017) (0.017) (0.017) (0.017) (0.019) (0.019)
A Rainfall 0.077** 0.077** 0.076** 0.077** 0.074** 0.075** 0.048* 0.050*
(0.032) (0.031) (0.030) (0.030) (0.030) (0.030) (0.027) (0.027)
A Log dist. to coast —0.224 —0.251 —0.168 —0.204 —0.169 —0.204 —0.058 —-0.077
(0.260) (0.257) (0.244) (0.240) (0.239) (0.233) (0.239) (0.236)
A Coast dummy —0.012 —0.009 —0.010 —0.006 —0.012 —0.007 —0.015 —0.012
(0.015) (0.015) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
A Log dist. to steppe 0.124 0.145 0.112 0.132 0.027 0.051 —0.085 —0.087
(0.229) (0.231) (0.217) (0.216) (0.210) (0.209) (0.212) (0.213)
A Steppe dummy —0.006 —0.002 —0.006 —0.002 —0.010 —0.006 —0.015 —0.011
(0.015) (0.015) (0.013) (0.014) (0.014) (0.014) (0.013) (0.013)
A Log land area 0.022*** 0.022*** 0.019*** 0.018*** 0.016*** 0.016*** 0.016*** 0.016***
(0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
R? 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
Number of obs. 5095 5095 5095 5095 5095 5095 3268 3268

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications control for latitude (not reported and not in local deviations).

* indicates p <0.10, ** p <0.05, and *** p <0.01.
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4), and

How location specific productivity, Z(d), shifts across locations in a region with four countries (N

where € = 0.2 and \ = 0.5.

Figure C.2
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