
C The model

C.1 Illustrations

Figure C.1 provides an illustration of how Y ∗ varies with N = 1/s for the same numerical

example as in Figure 2 in the paper.

Figure C.2 shows how location specific productivity varies across space and how it changes

as territories shift. The numerical example is the same as in Figure 2 in the paper, except

that N = 4 and ε = 0.2. This means that 20% of the locations belong to different states when

territories shift between the left and right position. When territories are in the left position,

the state territories are as follows: for state 1: (0, 0.2) ∪ (0.95, 1); for state 2: (0.2, 0.45); for

state 3: (0.45, 0.7); for state 4: (0.7, 0.95). The associated border locations are located at

0.2, 0.45. 0.7, and 0.95. The capitals are located at 0.125, 0.375, 0.625, and 0.875, for states

1 to 4, respectively.

To illustrate how Proposition 4 works, consider the border at 0.2 when territories are

in the left position. The productivity levels are 0.65 and 0.85 on the different sides of the

border; the higher productivity is in state 1, i.e., on the side of the border that is closest to

the capital. When territories shift to the right position the productivity level is 0.85, since

the location is now in the interior of state 1, the state whose capital the location is closest

to.

C.2 Other ways to model spatial resource allocation

This section considers a version of the model where the elite allocate resources non-uniformly

across the state’s territory. To economize on notation, we here set ε = 0, meaning borders

are assumed to be stable. However, nothing changes qualitatively if we assume ε > 0, only

that γ is replaced by γ(1 + ε2).

The major change compared to the setup in the paper is that resources are dependent

on location, and now denoted by R̃i,t(d), where d denotes distance to the center, and i and t

index country and period. Output at distance d from the center is denoted Ỹi,t(d), and now

given by

Ỹi,t(d) =
[
Z̃(d)Ai,t

]α [
R̃i,t(d)

]1−α
, (C.1)

where Ai,t is country i’s provision of a public good, located at the center of a country, which

here benefits locations at distance d from the center by a factor Z̃(d), given by (2) in the

paper. As in the paper, Ai,t could represent country i’s level of technology.

In each period, the elite first allocate the resources under their control to maximize

total output. Denoting their total amount of resources by Rtot
i,t , the elite thus maximize
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2
∫ s/2
0

Ỹi,t(x)dx, subject to 2
∫ s/2
0

R̃i,t(x)dx = Rtot
i,t , taking Rtot

i,t as given. Somewhat infor-

mally, ignoring that the control variable is continuous, the Lagrangian associated with this

maximization problem can be written as L = 2
∫ s/2
0

Ỹi,t(x)dx + Ω
[
Rtot
i,t − 2

∫ s/2
0

R̃i,t(x)dx
]
,

where Ω is the Lagrangian multiplier. The first-order condition can be written as

∂Ỹi,t(d)

∂R̃i,t(d)
= (1− α)

[
Z̃(d)Ai,t

]α [
R̃i,t(d)

]−α
= Ω, (C.2)

for all d ∈ [0, s/2], which states that the marginal productivity of resources is equalized

across locations.

Using (C.2), we can write resources at each location as R̃i,t(d) = ([1− α] /Ω)
1
α Z̃(d)Ai,t.

Using the budget constraint for resources gives

2

∫ s/2

0

R̃i,t(x)dx = 2

(
1− α

Ω

) 1
α

Ai,t

[∫ s/2

0

Z̃(x)dx

]
= Rtot

i,t . (C.3)

Recall from (2) in the paper that Z̃(d) = 1−4γd, which implies that
∫ s/2
0

Z̃(x)dx = (s/2)(1−
γs). Inserted into (C.3), this gives(

1− α
Ω

) 1
α

=
Rtot
i,t

Ai,ts(1− γs)
, (C.4)

which can be inserted into (C.2) to give resources per location as

R̃i,t(d) =

(
1− α

Ω

) 1
α

Z̃(d)Ai,t =
Rtot
i,t

s

Z̃(d)

1− γs
. (C.5)

Intuitively, resources allocated to locations at distance d from the center, relative to the

average resources across the country, are proportional to each location’s productivity, relative

to the average productivity of the country. Substituting (C.5) into the production function

in (C.1) shows that

Ỹi,t(d) = Z̃(d)

(
1

1− γs

)1−α

Aαi,t

(
Rtot
i,t

s

)1−α

. (C.6)

Again using
∫ s/2
0

Z̃(x)dx = (s/2)(1 − γs), and recalling that average output per location

equals (2/s)
∫ s/2
0

Ỹi,t(d)dx = Yi,t, we get

Yi,t = (1− γs)
(

1

1− γs

)1−α

Aαi,t

(
Rtot
i,t

s

)1−α

= (1− γs)αAαi,t
(
Rtot
i,t

s

)1−α

. (C.7)

Finally, we can set total resources to Rtot
i,t = sRi,t, where Ri,t denotes resources per

location, as given by (4) in the paper. This produces the same expression for Yi,t as in (3)

in the paper, with ε = 0, except that the factor 1− γs is now replaced by (1− γs)α.
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C.3 When do fragmented regions having higher output than uni-

fied?

Proposition 1 in the paper states that the model is ambiguous as to whether more fragmented

regions have higher or lower output per area than less fragmented ones. Here we try to say

something about when each case prevails. We do this by comparing a fully unified region to

one with two states, and pin down parametric conditions under which the former or latter has

higher output. We restrict attention to the case when ε = 0, since the concept of unstable

borders (ε > 0) has no meaning in a fully unified region.

For ease of exposition, first let

Q =

(
1

2

) 1+α
α
(

2− γ
1− γ

) 1
α

, (C.8)

which is increasing in γ. Intuitively, a high Q is associated with a high cost of distance (a

high γ). It can be seen that Q ≥ 1/2, since γ ≥ 0. We can now state the following:

Proposition C.1 Suppose ε = 0, and consider two regions, one fully unified (s = 1) and

one with two states (s = 1/2).

(a) If Q ≥ 1, then steady-state output per location (Y ∗) is always (weakly) higher in the

fragmented region.

(b) If Q ≤
(

α
1+α

) (
2−β+αβ
1−β+αβ

)
, then steady-state output per location (Y ∗) is always (weakly)

higher in the unified region.

(c) If
(

α
1+α

) (
2−β+αβ
1−β+αβ

)
< Q < 1, then steady-state output per location (Y ∗) is (weakly) higher

in the fragmented region if, and only if,

λ ≥ 2α

1− α

[
(1−Q)(1− β + αβ)

Q(1− β + αβ)− αβ

]
. (C.9)

Proof: First rewrite (11) in the paper, with ε = 0, as

Y ∗ = [sα (1− γs)]
1

1−α

[
τβF (s, λ)

1− β + βF (s, λ)

] α
1−α

R ≡ Ŷ (s). (C.10)

The task is to find conditions under which Ŷ (1
2
) R Ŷ (1). Using (C.10), and the expression

for F (s, λ) in (9) in the paper, gives

Ŷ ( 1
2
)

Ŷ (1)
=

{[
( 1
2)

1+α
(2−γ)

1−γ

] [(
1−β+βF (1,λ)

βF (1,λ)

)(
βF (1/2,λ)

1−β+βF (1/2,λ)

)]α} 1
1−α

=

{[(
1
2

)1+α (2−γ
1−γ

)] 1
α
(

1−β+βα
βα

)(
β[α+(1−α)λ/2]

1−β+β[α+(1−α)λ/2]

)} α
1−α

=
{
Q
(

1−β+βα
βα

)
H(λ)

} α
1−α

,

(C.11)
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where we have used the definition of Q in (C.8), and where we let

H(λ) =
β [α + (1− α)λ/2]

1− β + β [α + (1− α)λ/2]
. (C.12)

Note that H ′(λ) > 0, and recall that λ ∈ [0, 1]. Then some algebra demonstrates that

H(0) = αβ
1−β+βα ,

H(1) =
β( 1+α

2 )
1−β+β( 1+α

2 )
= β(1+α)

2−β+αβ .
(C.13)

We can now show the following:

If Q ≥ 1, then Ŷ (1
2
)/Ŷ (1) ≥ 1 always holds. To see this, use (C.11) and (C.13) to note

that it holds even when λ = 0, and since Ŷ (1
2
)/Ŷ (1) is increasing in λ, this proves part (a)

of the proposition.

If Q ≤
(

α
1+α

) (
2−β+αβ
1−β+αβ

)
, then Ŷ (1

2
)/Ŷ (1) ≤ 1 always holds. To see this, use (C.13), and

some algebra, to note that the given condition on Q is equivalent to Q
(

1−β+βα
αβ

)
H(1) ≤ 1,

which implies that Ŷ (1
2
)/Ŷ (1) ≤ 1 holds even when λ = 1; then recall again that Ŷ (1

2
)/Ŷ (1)

is increasing in λ, so it must hold also for λ < 1. This proves part (b) of the proposition.

Finally, if Q ∈
((

α
1+α

) (
2−β+αβ
1−β+αβ

)
, 1
)

, then Ŷ (1
2
)/Ŷ (1) ≥ 1 holds if, and only if,

Q

(
1− β + βα

αβ

)
H(λ) ≥ 1. (C.14)

Using (C.12), some algebra shows that this inequality can be written as in (C.9). This proves

part (c) of the proposition. Q.E.D.

Proposition C.1 is illustrated in Figure C.3. Part (a) describes the case when the cost

of distance is so high that fragmented regions are always richer, even without technology-

inducing resource competition (λ = 0). Part (b) describes the case when the cost of distance

is so low that fragmented regions are always poorer, even with maximum resource compe-

tition (λ = 1). Part (c) describes the case with intermediate costs of distance. Then the

fragmented region is richer if λ is large enough.

D Descriptive statistics

D.1 State coverage

Section 3 in the paper provided some motivation of the choice of period over which we

measure borders, i.e., 1500-2000. We noted, among other things, that the spatial coverage

shrinks as we go back in time. The reason is that we restrict attention to cells with at

least one state present throughout the period over which we measure border presence. For
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example, the 5202 cells in our benchmark sample are covered by statehood at each turn of

the century from 1500 to 2000.

Figure D.1 shows the change over time in the fraction cells covered by states among all

land cells in our data (i.e., cells that could potentially be covered by statehood) starting

at different turns of centuries from 800 to 2000. By 2000, almost all land cells (99.5%) are

covered by states, according to the Euratlas maps. The fraction cells covered by a state from

1500 and on is about 61%, and the corresponding fraction starting in 800 is 38%.

In the paper we consider border frequency 1300-1800 as an alternative to our benchmark

border frequency measure. One reason for this choice of alternative starting point can be

understood from Figure D.1. There it can be seen that the fraction cells with statehood

makes a relatively large drop from 60% to 53% when starting in 1200 instead of 1300.

D.2 Cross-correlations between different border variables

Table D.1 presents cross-correlations between each of the six Euratlas border dummies (bi,t)

and border frequency 1500-2000 (Bi).

We also construct two other border dummies based on other sources than Euratlas.

The first of these we call the current border dummy, which is based on maps from the

Global Administrative Areas (www.gadm.org). These are supposed to show contemporary

state borders. We do not know to which specific point in time that these refer, but the

GADM Version 2 data that we use were posted in January 2012.1 The other dummy vari-

able is one for language borders constructed from the World Language Mapping System

(www.worldgeodatasets.com/language).

All border dummies in Table D.1 show highly significant and large positive correlations

with border frequency. The border dummy for 2000 has the lowest correlation with border

frequency, but even that coefficient is as high as 0.599. The border dummies also show

positive correlation with each other, typically larger between closer years, suggesting that

borders are not stationary but change gradually over time. Despite the rise and fall of several

states and empires over these centuries, the locations of the borders between them are thus

quite persistent. This is consistent with a theory where some underlying constant factor,

such as geography, ultimately determines border locations.

Table D.1 also shows a very high correlation coefficient (0.934) between the Euratlas

border dummy for 2000 and the current border dummy, which also speaks to the reliability

of the Euratlas data.

The language border dummy shows the highest correlation with the Euratlas dummy for

2000 (a correlation coefficient of 0.510) and the current border dummy (0.531). It thus seems

1We also adjust the GADM data to let the Channel Islands belong to Great Britain and Åland belong

to Finland. While these have some degree of autonomy it is hard to categorize them as sovereign states.
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that state formation today follows ethnic lines more closely than in preindustrial times. This

may reflect the spread of democracy, making it easier for ethnic minorities living in a well

defined territory to secede and form their own states (see, e.g., Alesina and Spolaore 2003).

It could also be due to genocide, ethnic cleansing, and policies by state governments that

make ethnic and linguistic minorities comply with the state’s majority identity, as well as

more voluntary forms of migration.

D.3 Cross-correlations between different measures of historical

population densities

Table D.2 shows the pairwise correlation coefficients between different measures of historical

and current population densities. The benchmark measure used in the paper is here denoted

LPD-GPW. This is the log of one plus the population density in a cell, where the population

measure comes form the Gridded Population of the World (averaged over the period 2000-

2015), and land area from Natural Earth (see Section B of the appendix to the paper for

more details).

The other measures of population density refer to different historical years, and are

calculated following the same principles using data on historical populations from HYDE, a

source that we discuss more in Section I below. The measures from HYDE are here denoted

LPD-HYDE and refer to the years 1500, 1800, and 2000, respectively. The number of cells

with data from both the GPW and HYDE is 5150, i.e., most of the cells in our benchmark

sample of 5201 cells with data from GPW.

The main insight from Table D.2 is that population levels today and in preindustrial

times show high positive correlation. Log population densities in 2000 and 1800 from HYDE

have a correlation coefficient of 0.835, and the correlation between the HYDE measure for

1800 and our modern benchmark measure from GPW is 0.731. This illustrates that modern

and historic population densities measure roughly the same thing. That is, spatial variation

in modern population densities across this area was in large part determined several centuries

ago. This is hardly surprising, since cities are located in roughly the same places today as

they were several centuries ago.

Since the modern-day measure from the GPW presumably comes with less measurement

error than those from HYDE, is also used in many other studies, and has slightly larger

spatial coverage, we utilize this in our benchmark regressions in the paper.
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D.4 Cross-correlations between different measures of modern out-

comes

Table D.3 shows the unconditional correlation coefficients between border frequency (Bi)

and various measures of modern outcomes. Log night lights and log population density are

the main variables used in the paper; recall that log night lights is measured per unit of land

area. For further details on sources and definitions of these, see Section B of the appendix

to the paper.

Log night lights per capita is constructed from the same sources by first dividing total

night lights by total population in each cell, to get night lights per capita. What we here

call log night lights per capita equals the log of one plus night lights per capita.

GDP data are from Kummu et al. (2018) and provide GDP estimates at the level of 30

arc-second resolution. From these we construct two variables. The first we call log of GDP

per area. This is constructed by first computing the mean GDP across pixels in a cell for

the years 2000 and 2015, and then taking the log of one plus the average GDP across the

two years.

The other variable is log GDP per capita. This is constructed by dividing total GDP with

population by cell and by relevant years (2000 and 2015), where the population data come

from the Gridded Population of the World (the same used to calculate population density).

Log GDP per capita is then defined as the log of one plus average GDP per capita across

the two years.

The Kummu et al. (2018) data rely on interpolations from regional National Accounts

data, and are not commonly used in the literature (perhaps because they are relatively

recent). Therefore, we have chosen not to include these in the benchmark analysis in the

paper. The purpose of this section is mainly to assess what our benchmark measures might

capture. We first note from Table D.3 that both log night lights and log population density

show positive and significant correlations with log GDP per capita, with coefficients of 0.464

and 0.148, respectively. As argued in the paper, this seems to reflect that per-capita incomes

are higher in cities.

More importantly, log GDP per capita shows higher correlation with log night lights

per land area (our chosen benchmark measure) than with log night lights per capita, with

correlation coefficients of 0.464 and 0.092, respectively. This speaks against using night lights

per capita as a measure of living standards.
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E Geography variables

E.1 Motivation and interpretation of geography variables

Table E.1 tries to provide an overview of the different geography variables we have chosen

for our benchmark specification, and what motivates these choices. The categories are the

same as in the paper, although not all geography factors are mutually exclusive.

E.2 Elevation and ruggedness

We have considered various measures of how mountainous a territory is. Our benchmark

measures have been log ruggedness (i.e., the log of the standard deviation in elevation), and

two so-called mountain dummies, indicating if the average elevation of a cell exceeds 1000

and 2000 meters, respectively.

An alternative measure is the log mean elevation of a cell, which we explore in this

section. When constructing this variable, in order not to drop cells with negative elevation

(73 cells in total among the 5202 in our benchmark sample), we use elevation exceeding the

lowest level in the sample. That is, if xi denotes mean elevation of cell i (in meters) and x̂ is

the minimum xi across the 5202 cells (which in our baseline sample is −28 meters, located

close to the Caspian Sea), then log elevation is constructed as ln(1 + xi − x̂), which equals

zero for the cell with the lowest elevation.

Table E.2 shows that both log elevation and log ruggedness show positive and significant

pairwise correlations with border frequency, and also high correlation with each other. The

two thus seem to capture similar channels through which a mountainous terrain might cause

state fragmentation. This makes sense, since areas at high elevation also have cliffs and steep

slopes and thus high variation in elevation.

We also computed an alternative measure of ruggedness, following the formula used by

Nunn and Puga (2012). This is essentially designed to measure the ability for human and

other prey to hide. A very rough description of how it is constructed runs as follows. Starting

with a grid of raster points at which elevation is measured, let er,c be elevation at a raster

point located in column c and row r of that grid. The Nunn-Puga measure of ruggedness at

that raster point is then defined as√√√√ r+1∑
i=r−1

c+1∑
j=c−1

(ei,j − er,c)2,

which can then be averaged across all raster points in a cell (in our case), or a country (as

in Nunn and Puga 2012).
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As shown in Table E.2, the log of one plus the Nunn-Puga ruggedness measure has a

correlation of 0.928 with our benchmark measure. They thus essentially capture the same

thing.

Columns (1)-(3) of Table E.3 consider some regression specifications where we use dif-

ferent combinations of these variables. Column (1) of Table E.3 replicates column (10) in

Table 2 in the paper. Column (2) enters log elevation in lieu of the 2000 meter mountain

dummy, and column (3) drops log ruggedness. Log elevation has a relatively high positive

unconditional correlation with border frequency in Table E.2, and in column (3) of Table

E.3, where it is the only variable capturing mountainousness. However, the coefficient on

log elevation comes out with a negative and significant sign when entered together with log

ruggedness in column (2).

As discussed, the reason is that log elevation is highly correlated with log ruggedness,

which gives rise to multicollinearity, and likely explains the negative sign on the log elevation

coefficient. This is why we choose not to enter both. By contrast, the 2000-meter mountain

dummy and log ruggedness both come out as positive and significant in many (if not all)

specifications, e.g., in column (1) of Table E.3.

Columns (4)-(5) of Table E.3 are identical to columns (1)-(2), but replace our bench-

mark measures of ruggedness with the one based on the Nunn-Puga method. The results

are virtually identical, which is not surprising given the high correlation between the two

measures.

Columns (6)-(10) of Table E.3 repeat the regressions in columns (1)-(5), but control for

latitude; column (6) is identical to column (1) of Table 3 in the paper. As in the paper, we

find that log ruggedness now loses significance, which holds also for the Nunn-Puga measure.

E.3 Coal, temperature, and lakes

Table E.4 considers three other geography variables. The coal dummy indicates presence of

coal in the cell, as defined by the presence of rock of specific ages in maps provided by the

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover, Germany.2

Temperature refers to mean annual temperature measured in degrees Celsius averaged

over the period 1961-90. The source is GAEZ, which we used also for agricultural suitability

and rainfall.

The last variable measures the fraction of the cell’s area covered by lakes, based on

Natural Earth data, which is the source used also for, e.g., coasts and rivers.

2We use the map IGME 5000 from BGR, and the file “age (chronostratigraphic).lyr” in a folder labelled

“layer.” The coal dummy indicates presence of rocks from the following geological periods: Carboniferous

(C), Carboniferous-Permian (C-P), Carboniferous-Middle Permian (C-P2), Early Carboniferous (C1), Late

Carboniferous (C2), Late Carboniferous-Permian (C2-P), and Late Carboniferous-Middle Permian (C2-P2).
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Consider first columns (1)-(3). Coal and temperature show positive and negative corre-

lations with borders, respectively, both highly significant, while the lake variable comes out

as positive and slightly less significant. The same pattern holds when all three are entered

together in column (4). However, none of them comes out as significant when controlling for

our benchmark set of controls in column (5)-(8).

All specifications in Table E.4 control for latitude, but the results referring to these three

variables do not change qualitatively without this control.

E.4 Alternative agricultural suitability variables

Recall that our two benchmark measures of agricultural suitability are based on the four

most common grains (wheat, barley, oats, and rye), and refer to potential yields when using

rainfed and irrigated agriculture, respectively. Table E.5 examines two alternative measures

of agricultural suitability.

Suitability for potato agriculture is constructed from GAEZ, the source used for our

benchmark measures, and has been used by Nunn and Qian (2011). The Caloric Suitability

Index (CSI) comes from Galor and Özak (2016) and is also partly based on GAEZ, but is a

calorie weighted measure of the yield a cell can generate if growing the crop with the highest

caloric content. Here we use the definition that considers all crops available after 1500, i.e.,

in the wake of the Columbian exchange. Both are constructed under the assumption that

rainfed agriculture is used.

Columns (1)-(3) of Table E.5 enter the potato measure and CSI, both separately and

together, in lieu of the two benchmark agricultural suitability measures, keeping all other

benchmark controls unchanged. There is a positive significant effect from CSI on borders,

and the potato measure comes out as negative, but significant only when entered together

with CSI in column (3).

This pattern holds broadly when including our benchmark measure for suitability for

rainfed agriculture as control in columns (4)-(6), and when entering both of our benchmark

suitability measures, rainfed and irrigated suitability, in columns (7)-(9).

The two alternative measures are highly correlated with our benchmark measure of suit-

ability for rainfed agriculture: the correlation coefficients are 0.81 and 0.75 for the potato

measure and CSI, respectively. They are somewhat less correlated with the irrigated suitabil-

ity measure, for which the corresponding correlation coefficients are 0.45 and 0.41. Since both

the potato measure and CSI are constructed under the assumption that rainfed agriculture

is used, this is not too surprising.

Because we want to be able to capture the possibly different effects of suitability for

rainfed and irrigated agriculture, and because the potato and CSI measures do not have any

irrigation based equivalents, we choose the measures based on the four common grains as
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our benchmark controls.

One other argument against using the potato measure could be that the four common

grains may have been an overall more important source of nutrition than the potato for

the region and period that we consider. According to Leff et al. (2004, Table 5), wheat

is currently the most commonly grown crop by land area in the region that we consider

(Asiatic Russia, Central Asia, Europe, the Middle East, and Northern Africa). The land

most suitable for potato cultivation is concentrated in Europe (Nunn and Qian 2011, pp.

611-612).

E.5 Alternatives to river and coast dummies

Table E.6 shows the results when regressing border frequency on the benchmark set of

geography controls, but using non-dummy measures of river and coast presence. We consider

two alternative measures: river and coastline density, defined as the length of a river or coast

line, divided by the cell’s land area; and the log of one plus the length of the river or coastline,

respectively. (These lengths are measured in kilometers.) Because we control for the log size

of the cell’s land area, the latter measures correspond approximately to the log of the former.

The dummies used in the paper are indicators of the presence of a river or coast in the

cell, so they take the value one when the corresponding density or log length variables are

strictly positive, and zero otherwise.

Column (1) is identical to column (10) in Table 2 in the paper. Column (2) uses the

density measures, and column (3) the log length measures. Columns (4)-(6) are identical to

columns (1)-(3) but control for latitude; column (4) is thus identical column (1) of Table 3

in the paper.

Not too surprisingly, most results are qualitatively similar. The major difference is that

coastline density here comes out as positive. This is driven by a strong negative correlation

between log land area and coastline density; their pairwise correlation coefficient is −0.75.

When not controlling for log land area, the estimated coefficient is negative. In other words,

the positive correlation seems to be driven by variation in the denominator in the coastline

density measure.

E.6 Alternative transformations of geography variables

There are no clear rules when choosing whether to log a variable, or not, and/or whether

to transform it in other ways. One informal rule of thumb might be to log a variable

that appears to have a log-normal distribution, since the distribution of its logged cousin is

normally distributed. The same argument might apply for any variable that skews to the

right. This is roughly the approach taken in our paper. Figure E.1 shows the distribution
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of ruggedness and rainfall, before and after log transformation. As seen, the distribution of

ruggedness is skewed, which is why we choose to log it. The distribution of rainfall is much

less skewed, and indeed becomes more skewed when logging it.

Table E.7 explores how our results change using logged instead of non-logged variables,

and vice versa. Column (1) reproduces column (1) of Table 3 in the paper; column (2)

uses non-logged distances to coast and steppe; column (3) uses non-logged distances and

non-logged ruggedness; and column (4) reverts to the benchmark setting, but with logged

rainfall. (When logging rainfall we follow the same approach as when logging other variables:

we use the log of one plus the deviation of rainfall from the sample minimum.)

The estimated coefficients on all variables carry the same signs as those on their logged

or non-logged equivalents, and come out as equally significant, or more significant (in the

case of ruggedness). The coefficients on the other variables are largely unchanged, except

that the steppe dummy now comes out as less significant.

F Beta coefficients

Table F.1 reports the standardized (or beta) coefficients, for a number of specifications where

border frequency is regressed on geography. To simplify the coding, we also report robust

but non-Conley adjusted standard errors, but that alteration has no effect on the estimated

beta coefficients. Column (1) applies the same specification as in column (10) of Table 2 in

the paper, and reproduce the beta coefficient estimates reported in the text in Section 4.1

of the paper. Column (2) is identical to column (1), but uses the 1000 meter (instead of

2000 meter) mountain dummy. Columns (3)-(4) and (5)-(6) use the same specifications as

columns (1)-(2), but add controls for latitude, and latitude fixed effects, respectively.

Table F.1 shows that the beta coefficients change size depending on specification, but

mostly not by large amounts. The sum of the absolute values of the eleven beta coefficients

(except log land area and latitude) is close to one in all specifications. Recall that this sum

measures the effect on border frequency when changing all variables together in the direction

which raises border frequency.

We also note that the standard errors are much smaller when not applying the Conley

(1999) adjustment, as we did in the paper (i.e., when not adjusting for spatial correlation).

This is why many coefficients, such as log ruggedness and mountain dummies over 1000

meters, come out as more significant here than in the corresponding specifications in Tables

2 and 3 in the paper.

Table F.2 reports results for various specifications when regressing modern outcomes

on border frequency, with beta coefficients (and robust standard errors). All coefficient

estimates come out as significant, which they did also in the corresponding specifications
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with Conley adjusted standard errors. The magnitude of the beta coefficients shrinks when

adding more controls. The estimated beta coefficients reported in the text in Section 5.1 of

the paper (0.13 and 0.14 for log night lights and log population density, respectively) are

confirmed in columns (3) and (7).

G Fixed effects for artificial countries

Tables 4 and 6 in the paper reported results in terms local deviations in dependent and

independent variables. This absorbs factors that are relatively constant among neighboring

cells. Another approach that achieves roughly the same thing is to enter fixed effects for

clusters of cells that are close to each other. Here we use square clusters of (at most) nine

cells: one cell in the middle, plus neighboring cells to the south, north, west, east, and in

four diagonal directions. (Where neighboring cells are missing there will be fewer than nine

cells.) We can think of these clusters as artificial countries.

Obviously, no unobserved characteristic would be distributed exactly in square clusters,

and how they are centered will always be somewhat arbitrary. However, they should ar-

guably do a good job absorbing any factor that is approximately constant between closely

neighboring cells.

Tables G.1 and G.2 present results from regressions identical to those in Tables 3 and 5 in

the paper (including controls for latitude or latitude fixed effects as indicated), but with fixed

effects for artificial countries of nine neighboring cells. The estimated coefficients are similar

to those in Tables 4 and 6 in the paper, where we have used the same specifications but

in terms of local deviations. For example, the more spatially clustered geography variables,

measuring distances to coast and steppe, come out as less significant both in Table G.1 and

Table 4 compared to Table 3.

Notably, the coefficients on border frequency in Table G.2 carry the opposite signs com-

pared to Table 5 in the paper. This is consistent with Proposition 2 in the paper, and also

what we would expect to find given the results in Table 6. As discussed, both methods

absorb unobserved characteristics among cells that are close to each other.

G.1 What do artificial country fixed effects absorb?

As argued, entering these artificial country fixed effects amounts to the same thing as running

regressions in terms of local deviations. The model in the paper explains why we may see

different results at the global and local levels when we study effects of borders on modern

outcomes.

Here we want to better understand what these fixed effects absorb when we study the
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effects of geography on borders. To that end, consider a world where cells can be located in

one of several artificial countries, or regions, indexed by a. Let Bi,a be border frequency in

cell i, located in region a, and suppose the true data generating process is

Bi,a = α + βG1
i,a + ηG2

a + χIa + εi,a, (*)

where Ia is some non-geography variable (e.g., institutions or culture) that varies only be-

tween regions, and G1
i,a and G2

a are two geography variables: G1
i,a varies both between and

within regions, while G2
a is a geography variable that varies only between regions. For ex-

ample, rivers and mountains can be found to some extent in all regions, and might thus be

captured by G1
i,a. By contrast, G2

a could represent suitability for rainfed or irrigated agricul-

ture, or distances to steppe or coast, which are very spatially clustered and thus (almost)

completely constant within (small) regions.

Suppose we do not have data on Ia. Omitting Ia when estimating (*) could be problematic

if Ia is correlated with G2
a. The OLS estimate of η may then be biased. One way to address

this is to enter region fixed effects, i.e., a full set of dummies, one for each region. However,

if we estimate (*) with region fixed effects, then we cannot get an estimate of η, since (by

assumption) it does not vary within regions. The fixed effects would absorb the variation we

are after. We might get a more precise estimate of β, but it would still be wrong to conclude

that η = 0 (i.e., that G2
a has no effect on Bi,a).

In other words, entering fixed effects for small regions (such as nine-cell artificial coun-

tries) can give the false impression that some geography variables have no effect on borders.

These fixed effects may be good at removing any bias when estimating η that is caused

by omitting Ia, but they also absorb the effects of G2
a. This is why we want to be careful

when interpreting the estimated coefficients on some geography variables in Table G.1, and

in Table 4 in the paper, in particular those that are spatially clustered.

Moreover, we are not necessarily trying to estimate η, since this parameter probably does

not capture all the ways in which borders depend on geography. That is, Ia itself should

depend on G2
a, since geography is a primitive, while culture or institutions are endogenous,

and presumably depend on geography, directly or indirectly. To make this point, suppose

that

Ia = ϕ+ πG2
a + ξa, (**)

where ϕ and π are coefficients and ξa is an error term. Using (**), we can write (*) as

Bi,a = α̃ + βG1
i,a + η̃G2

a + ε̃i,a, (***)

where α̃ = α + χϕ, η̃ = η + χπ, and ε̃i,a = εi,a + χξa. Estimating (***) with OLS without

region fixed effects would give us an unbiased estimate of η̃, which is what we are really

interested in, since this captures all the ways in which geography affects borders, including

those that work through Ia.
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H Fixed effects for modern countries

Tables H.1 and H.2 show the results when we enter fixed effects for existing countries, as

defined by modern borders from GADM (see Section D.2 for details). The specifications are

otherwise identical to those in Tables 3 and 5 in the paper.

The results when regressing borders on geography in Table H.1 have some similarities

with those where we entered artificial country fixed effects in Table G.1, and the local

regressions in Table 4 in the paper. Note, e.g., that mountains over 1000 meters come out as

more significant than those above 2000 meters. This may not be too surprising, since many

countries are relatively small. Within modern countries current and historical borders tend

to be located, e.g., by rivers, in rugged terrain, and where it rains.

Table H.2 reports results from regressing modern outcomes on borders. Here we find

no significant results. One interpretation is that many of the positive effects through which

borders affect development work through institutions and other factors that are relatively

constant within modern countries. For example, institutions may depend on the size and

shape of modern countries, which is in itself ultimately the outcome of geography. In other

words, these modern country fixed effects may be endogenous, and thus not very good

controls.

Moreover, as just mentioned, because many modern countries are relatively small, these

regressions may partly capture the (negative) local correlations, not only the (positive) global

ones. Recall from the model that within countries, the poorest regions tend to be around

the borders, while more fragmented regions (i.e., with more countries) can still have better

outcomes on average.

I Alternative measures of urbanization

Table 8 in the paper reported results from a series of panel regressions using data from Bosker

et al. (2013) on historical urban populations. These data cover eleven turns of centuries

from 800 to 1800. In the paper, we consider the period from 1500, since this is when our

benchmark border data start. (Section 3 in the paper discusses the choice of benchmark

period.)

Tables I.1 and I.2 show the results for the periods 1300-1800 and 800-1800, respectively,

in specifications otherwise identical to those in Table 8 in the paper. (Note, however, that

the number of cells shrinks to 598 in Table I.2, due to a smaller sample when imposing the

restriction of continual statehood present from 800.)

The result are very similar results to Table 8. In particular, the coefficient on the same-

century border dummy comes out as negative and significant. That is, cells that lose a border
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from one century to the next experience a simultaneous rise in urbanization, consistent with

Proposition 4 in the paper.

Recall that Bosker et al. (2013) report urban population numbers only for some well

documented cities, making us lose much of the sample. Table I.3 instead utilizes data

from the History Database of the Global Environment (HYDE), which provides data on

historical urban and rural populations with greater spatial coverage (Klein Goldewijk et al.,

2010, 2011). We calculate the urbanization rate as urban population over total population,

referred to below as the fraction urban for short. While HYDE has greater spatial coverage

than Bosker et al. (2013), our understanding is that it interpolates across space to generate

more spatial disaggregation. This is why we choose not to use these data in our benchmark

regressions in the paper, but they help showing how robust our results are.

The regressions in Table I.3 are based on a panel of 5025 cells from 1500 to 2000; these

are the cells with HYDE data available that overlap with our benchmark sample of 5202

cells. (To get a balanced sample, we drop all cells with HYDE data missing for any century,

but this has very little impact on the results.) The results in Table I.3 are also close to those

in Table 8 in the paper.

J Dropping subsamples of cells

Table J.1 reports results when regressing border frequency on geography and dropping dif-

ferent subsamples. Column (1) replicates column (10) of Table 2 in the paper. Columns

(2)-(5) drop coast cells, fully unified cells (Bi = 0), fully fragmented cells (Bi = 1), and cells

in Northern Europe, respectively.3 Some correlations change compared to the benchmark

specification in column (1). For example, when we drop coastal cells in column (2), rugged-

ness and distance from the coast come out as insignificant, and the steppe dummy as more

significant.

Dropping unified cells in column (3) shrinks the sample from 5202 to 1807 cells, rendering

most coefficients insignificant, but log ruggedness, the river dummy, and rainfall are still

significant, and of the same sign as in the benchmark specification. By contrast, dropping

the 70 cells that are fully fragmented in column (4) changes the results very little compared

to the benchmark in column (1).

In column (5) we drop cells in Northern Europe, which includes, e.g., Britain and Scan-

3Cells in Northern Europe include all cells intersected by the GADM territories of the following contem-

porary countries: Denmark, Estonia, the Faeroe Islands, Finland (including the Åland Islands), Iceland,

Latvia, Lithuania, Norway, Sweden, and Great Britain (including the Channel Islands, Isle of Man, and

Northern Ireland). This is based on the UN classification codes for detailed regions, using the STATA

command kountry. See https://unstats.un.org/unsd/methodology/m49/
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dinavia. The major change here is that suitability for rainfed agriculture loses significance.

Part of the reason is that this region has below average suitability for any type of agriculture,

also rainfed, even though it rains more there; it is also slightly less fragmented than other

cells, with fewer city states of the type seen on the continent. However, the change is also

due to a positive correlation between borders and suitability for rainfed agriculture within

Northern Europe, which is lost when dropping this region.

Columns (6)-(10) report the results from the same regressions as in columns (1)-(5),

but control for latitude; column (6) thus replicates column (1) of Table 3 in the paper.

The differences between column (6) and columns (7)-(10) are qualitatively similar to those

between column (1) and columns (2)-(5).

Notably, almost all estimated coefficients that come out as significant when dropping

these subsamples carry the same sign as in the corresponding benchmark regression; log

distance to coast is a borderline exception in column (7). In other words, the benchmark

correlations between geography and borders do not differ qualitatively when dropping any

of these particular subsamples.

Table J.2 reports the results when regressing modern outcomes on border frequency. We

enter our benchmark set of geography controls in columns (1)-(5), and add latitude controls

in columns (6)-(10). Border frequency comes out as positive and significant throughout.

When dropping unified cells in columns (3) and (8), the estimated coefficients on border

frequency even become larger.

The correlation stays positive and significant also when we drop Northern Europe. This

contrasts with the results in Table 5 in the paper, where we saw that the correlation between

modern outcomes and border frequency weakened considerably when we dropped Western

Europe or the Holy Roman Empire. In other words, these results are not driven by Britain

and Scandinavia, but rather continental Europe.

K The Abramson data

Our border variables were computed from the maps compiled by Euratlas (Nüssli 2010). In

this section we apply the same procedure to another set of maps used by Abramson (2017).

These use as starting point the Centennia Historical Atlas, the original creator of which is

Reed (2008). We refer to these as the Abramson data for short.

These data obviously measure something very similar to Euratlas. They also measure

borders at a higher temporal frequency than the Euratlas data. On the other hand, they

cover a smaller area, and only up to 1790.

Because these data are proprietary we do not use them in our benchmark regressions.

Rather, the exercise undertaken here is to compare the results when using the Abramson
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data for the same, or adjacent, years as those for which we have Euratlas data.

To that end, and because the Abramson data end in 1790, we first compute border

frequency across the years 1500, 1600, 1700, and 1790 from the Abramson data. This gives us

a border frequency variable defined over a total of 3861 cells overlapping with our benchmark

Euratlas data, which we can compare to the corresponding Euratlas border frequency index

based on the years 1500, 1600, 1700, and 1800. The two border frequency measures have a

correlation coefficient of 0.80 across these 3861 cells.

Table K.1 shows the results when regressing the Abramson and Euratlas border frequency

measures on our benchmark set of geography controls. Columns (1)-(3) include latitude

controls and columns (4)-(6) latitude fixed effects.

Consider first column (1), which shows the results for the Euratlas 1500-1800 border

frequency measure based on all 5202 cells. These are similar to those based on the same

source for the years 1500-2000 in column (1) in Table 3 in the paper. Column (2) again

uses the Euratlas 1500-1800 measure as the dependent variable, but on a restricted sample

of 3861 cells on which the Abramson measure is defined. Distance to coast and the steppe

dummy lose significance; the estimated coefficient on log ruggedness comes out as negative

but not significant. Column (3) uses the Abramson measure as the dependent variable. The

main surprise here is that the negative coefficient on log ruggedness comes out as significant

at the 5% level. However, the other coefficients do not change much between columns (2)

and (3).

Columns (4)-(6) use identical specifications as columns (1)-(3), but enter a full set of

latitude fixed effects instead of latitude controls. Now the coefficient on log ruggedness

comes out as positive again, although less significant with the Abramson sample in column

(5) compared to the Euratlas sample in column (4). Notably, all estimated coefficients are

very similar between columns (5) and (6), i.e., when we keep the sample region constant and

only change the border data.

Table K.2 presents the results when regressing modern outcomes on the Abramson and

Euratlas border frequency measures, with our benchmark set of geography controls and

latitude controls. Both measures of border frequency show positive and significant correlation

with both night lights and population density.

The Abramson data are useful for one more exercise. As discussed in the paper, the areas

once covered by the Holy Roman Empire exhibit very high levels of border frequency. In

short, we can think of the HRE not as an empire, but rather a type of multi-state agreement

that in effect prevented actual unification. Table K.3 provides one way to illustrate this.

First, we note that border frequency 1500-1800 among cells in the HRE in the Euratlas

equals 0.65, while border frequency for cells outside the HRE is just 0.08. To see that this is

not an artefact of the Euratlas data, we note that the corresponding numbers using border
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frequency 1500-1790 from Abramson are 0.69 and 0.09, respectively. That is, these two

sources report just about equally large variation in state fragmentation within and outside

the HRE.

L Using other measures of modern outcomes

Table L.1 explores regressions using alternative outcome variables. Panels A and B regress

log night lights and log population density on border frequency in five different specifications,

repeating the first five columns of Table 5 in the paper. Recall that our benchmark log night

lights variable refers to night lights per area (i.e., the average across pixels in a cell).

Panels C and D report results using contemporary data on GDP per area and GDP per

capita, respectively, using GDP data from Kummu et al. (2018) and population data from

GPW. Panel E makes use of population density measured in 1800 based on HYDE. These

data sources are discussed in further detail in Sections D.4 and I above, and in Section B of

the appendix to the paper.

Columns (1)-(3) confirm that the correlation between border frequency and modern out-

comes broadly holds for these alternative outcome variables, although the results for log

GDP per capita are somewhat weaker when using latitude fixed effects in column (3). The

results are not too sensitive to the choice of outcome variable, but the effects seem larger on

population density than livings standards.

Columns (4) and (5) show that the correlation weakens or is reversed when dropping

Western Europe, or the HRE. In the case of GDP per capita, the correlation turns negative

and highly significant. According to this measure of modern outcomes, state fragmentation

has been harmful to development outside Western Europe or the HRE.

Table L.2 runs the same regressions as in Table L.1 but using border frequency 1300-1800

instead of the benchmark 1500-2000 measure, and also redefines the HRE to be based on the

period 1300-1800. The results do not change much. However, the effect of borders 1300-1800

on population density in 1800 in Panel E is still positive and significant at the 5% level when

we drop Western Europe. In other words, some positive effects of state fragmentation on

population seem to be present even outside the Western core when we focus on preindustrial

(or Malthusian) times.
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M Controlling for preindustrial urbanization and pop-

ulation density

One concern is that the correlation between modern outcomes and border frequency is caused

by some third factor that affected both. For example, Western Europe may be more devel-

oped and have higher population density today because it was already more urbanized and

densely populated in preindustrial times—for reasons not related to factors that we already

control for in our regressions—and this might have caused it to have a more fragmented state

structure.

A similar concern can be raised about the correlation between border frequency and

geography. Rather than geography determining border locations directly, the correlations

between geography and border frequency could be due to geography affecting population

density and urbanization, which in turn could affect state fragmentation, and thus borders.

That is, urbanization and population density could be a channel through which (some of) our

geography variables affect borders. While potentially interesting, this would not necessarily

contradict our model, where cities (capitals) are located at the center of states, i.e., away

from border areas.

We first explore the latter of these two possibilities. Table M.1 presents results from

regressing border frequency on our benchmark set of geography variables and latitude, with

column (1) replicating column (1) of Table 3 in the paper. The remaining seven columns

enter controls for five different measures of preindustrial urbanization (two from Bosker et

al. 2013, and three form HYDE), and two preindustrial population density measures (from

HYDE).4 For details about the data sources, see Section I above.

Some correlations do change when we control for log city population from Bosker et al.

(2013) in columns (2) and (3). The coefficient on the 2000-meter mountain dummy turns

negative, and that on log distance to the coast turns positive, i.e., the opposite of the result

in column (1). The reason seems to be a sample composition effect: among the 644 cells

with Bosker data available, border frequency shows negative partial correlation with the

2000-meter mountain dummy, and positive partial correlation with log distance to coast;

the coefficients are approximately −0.04 and 0.2, respectively. The coefficients on the other

geography variables are relatively unchanged when comparing column (1) to columns (2)

and (3).

In columns (4)-(8) of Table M.1, where we use the HYDE variables as controls, the

results are almost identical to those in column (1). Using these controls is arguable more

4Although we use the fraction urban 1500-2000 from HYDE as a control in some regressions, we refer to

all these controls as preindustrial for short. The periods are somewhat arbitrarily chosen, but the results are

not very sensitive to these choices.
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informative, given that the samples are larger and closer to the benchmark. The overall

conclusion should thus be that the effect of geography on borders does not work primarily

through population density or urbanization.

The other concern discussed above was that the correlation between modern outcomes

and border frequency could be driven by variation in preindustrial urbanization or popula-

tion density. Tables M.2-M.4 regress night lights and population density on border frequency

1500-2000, controlling for the same measures of preindustrial population density and urban-

ization as those used in Table M.1. All specifications include our benchmark set of geography

controls and latitude. As expected, all measures of preindustrial population density and ur-

banization correlate with both night lights and population density, but border frequency

still comes out as positive and significant in all specifications. In other words, borders do

seem to have a positive effect on modern development, even when we control for a number

of preindustrial measures of development.

N Measuring borders over other time periods

In the paper we used border frequency from 1500 to 2000 as our benchmark measure. This

section considers border frequency measured over other time periods: 1300-1800 (as some-

times reported already in the paper), 1300-1900, 1300-2000, and 800-2000. We apply the

associated state samples, meaning we only consider cells that had a state present throughout

the period over which we measure borders frequency, i.e., at all turns of the centuries starting

in 1300 (5095 cells), or 800 (3269 cells), respectively.

Table N.1 shows the results when regressing different measures of border frequency on

latitude and the benchmark set of geography controls, alternating between the 1000- and

2000-meter mountain dummies. Columns (1) and (2) of Table N.1 replicate columns (6) and

(7) of Table 3 in the paper.

The other estimated coefficients in Table N.1 are similar to those in Table 3 in the paper,

but not identical. Log ruggedness comes out as more significant, and log distance to the

coast and the steppe dummy as less significant, when measuring borders from 800 to 2000

in columns (7) and (8). This is to large extent a sample composition effect, driven by cells

which are dropped (i.e., cells gaining statehood between 800 and 1500). The dropped cells

tend to be located in more eastern and inland areas, which have become relatively unified

when states formed there after 800.

For example, we already saw that the benchmark border frequency measure based on the

period 1500-2000 shows negative pairwise correlation with log distance to the coast if we use

the benchmark 1500-2000 state sample (see Table 1 in the paper), which holds also when

controlling for other geography variables (Tables 2-3). However, the pairwise correlation
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between the same two variables turns negative in the 800-2000 state sample.

Table N.2 reports results from the same regressions as in Table N.1, but with all bor-

der and geography variables expressed in local deviations from neighboring cells. Columns

(1) and (2) replicate columns (6) and (7) of Table 4 in the paper. The estimates in the

other columns are very similar. In other words, the local correlations between borders and

geography do not seem sensitive to the period considered.

Finally, Tables N.3 and N.4 show the global and local correlations between borders

and modern outcomes, using the same alternative periods for measuring border frequency.

Columns (1) and (5) of Table N.3 replicate the two panels for column (6) of Table 5 in the

paper, while columns (1) and (5) of Table N.4 replicate the two panels in column (6) of

Table 6. The remaining results in Tables N.3 and N.4 closely resemble those in the paper.

The global correlations in Table N.3 are positive and the local correlations in Table N.4 are

negative, just as in Tables 5 and 6, respectively.
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Table D.2: Cross-correlation table

Variables LPD-HYDE 1500 LPD-HYDE 1800 LPD-HYDE 2000 LPD GPW

LPD-HYDE 1500 1.000

LPD-HYDE 1800 0.928 1.000

(0.000)

LPD-HYDE 2000 0.751 0.835 1.000

(0.000) (0.000)

LPD GPW 0.702 0.731 0.868 1.000

(0.000) (0.000) (0.000)

Notes: Unconditional pairwise correlation coefficients between different measures of modern and

preindustrial population densities, from HYDE and the Gridded Population of the World, with p-

values in parentheses. LPD-GPW is the benchmark measure used in the paper, i.e., Log Population

Density from the Gridded Population of the World, and refer to the period 2000-2015. LPD-HYDE

is Log Population Density from HYDE for 1500, 1800, and 2000. The number of cells is 5150.
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Table E.1: Motivation of the choice of geography variables.

Variable(s) Examples, comments Related literature

Mountains>2000,1000m;

Log ruggedness

The Pyrenees between France, Spain,

and Andorra, the Alps between, e.g.,

Italy and Austria, the Himalayas

(McMahon Line) between China/Tibet

and India. The Jinshanling segment of

the Great Wall of China is located in

mountainous terrain

Holdich (1916), Brigham

(1919), Diamond (1997,

pp. 414-415), Pounds

(1972, pp. 86-89)

River dummy The Rhine between France and Ger-

many, the Shatt al-Arab river between

Iran and Iraq, the Amur and Ussuri

rivers between Russia and China

Pounds (1972, pp. 88-92),

Lord Curzon of Keddle-

ston (1907)

Agricultural suitability:

rainfed and irrigated

Farming can affect population density,

state development. First states pre-

ceded by Neolithic Revolution. Irriga-

tion crucial for state development in the

Middle East (and democracy in modern

times); likely to affect territorial expan-

sion of states

Wittfogel (1957), Hi-

bbs and Olsson (2004),

Bentzen et al. (2017)

Rainfall Found to be highly correlated with lin-

guistic diversity. Proxy for deserts, arid

regions, cattle farming. Helps pick up

variation not fully absorbed by related

variables: e.g., rainfed/irrig. agricul-

ture, mountains, coasts (higher rainfall

in mountains, along Atlantic coast)

Nettle (1996, 1998,

1999), Umesao (2003),

Michalopoulos (2012)

Log dist. to coast; Coast

dummy

Europe’s indented coastline relative to

China’s; some states are islands (Eng-

land, Ireland, Japan)

Cosandey (1997, Ch. 6),

Diamond (1997, pp. 414-

415), Hoffman (2015, Ch.

4)

Log dist. to steppe;

Steppe dummy

State development in China linked

to Mongol invasions from the steppe;

larger states in Asia and Eastern Eu-

rope than in Western Europe (e.g., Rus-

sia, Ukraine)

Barfield (1989), Turchin

(2009), Ko et al. (2018)
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Table E.2: Cross-correlation table

Variables Border freq. Log elevation Log rugg. (KL) Log rugg. (NP)

Border freq. 1.000

Log elevation 0.119 1.000

(0.000)

Log rugg. (KL) 0.147 0.812 1.000

(0.000) (0.000)

Log rugg. (NP) 0.140 0.752 0.928 1.000

(0.000) (0.000) (0.000)

Notes: Unconditional pairwise correlation coefficients between border frequency 1500-2000

and different measures of elevation and ruggedness, with p-values in parentheses. Measures

of log ruggedness based on the standard deviation of elevation, and used in the paper, are

indicated by KL. Those based on the method used by Nunn and Puga (2012) are indicated

by NP.
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Table E.4: Geography and border frequency: coal, temperature, and fraction lake.

Dependent variable: Border frequency 1500-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Coal dummy 0.053∗∗∗ 0.050∗∗∗ 0.009 0.009

(0.018) (0.018) (0.017) (0.017)

Temperature −0.009∗∗∗ −0.009∗∗∗ −0.002 −0.002

(0.003) (0.003) (0.003) (0.003)

Fraction lake −0.148∗ −0.115 −0.024 −0.022

(0.087) (0.088) (0.083) (0.083)

Mountain >2000m 0.146∗∗∗ 0.137∗∗∗ 0.146∗∗∗ 0.136∗∗∗

(0.043) (0.045) (0.043) (0.045)

Log ruggedness 0.007 0.005 0.007 0.005

(0.006) (0.006) (0.006) (0.006)

River dummy 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗

(0.011) (0.011) (0.011) (0.011)

Ag. suit. rainfed 0.124∗∗∗ 0.121∗∗∗ 0.124∗∗∗ 0.121∗∗∗

(0.031) (0.032) (0.031) (0.032)

Ag. suit. irrig. −0.100∗∗∗ −0.098∗∗∗ −0.100∗∗∗ −0.098∗∗∗

(0.021) (0.020) (0.021) (0.021)

Rainfall 0.063∗∗∗ 0.064∗∗∗ 0.064∗∗∗ 0.063∗∗∗

(0.013) (0.012) (0.012) (0.013)

Log dist. to coast −0.104∗∗∗ −0.106∗∗∗ −0.104∗∗∗ −0.106∗∗∗

(0.036) (0.035) (0.036) (0.035)

Coast dummy −0.064∗∗∗ −0.062∗∗∗ −0.064∗∗∗ −0.062∗∗∗

(0.014) (0.015) (0.014) (0.014)

Log dist. to steppe 0.166∗∗∗ 0.173∗∗∗ 0.168∗∗∗ 0.171∗∗∗

(0.032) (0.033) (0.032) (0.033)

Steppe dummy 0.045∗∗∗ 0.047∗∗∗ 0.045∗∗∗ 0.046∗∗∗

(0.017) (0.017) (0.017) (0.017)

Log land area 0.027∗∗∗ 0.021∗∗∗ 0.028∗∗∗ 0.020∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004)

R2 0.03 0.03 0.02 0.04 0.15 0.15 0.15 0.15

Number of obs. 5202 5202 5202 5202 5202 5202 5202 5202

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications include latitude controls (not reported). * indicates p <0.10,

** p <0.05, and *** p <0.01.
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Table E.6: Geography and border frequency: alternative measures of rivers and coasts.

Dependent variable: Border frequency 1500-2000

(1) (2) (3) (4) (5) (6)

Mountain >2000m 0.129∗∗∗ 0.137∗∗∗ 0.129∗∗∗ 0.146∗∗∗ 0.153∗∗∗ 0.145∗∗∗

(0.042) (0.042) (0.042) (0.043) (0.043) (0.043)

Log ruggedness 0.017∗∗∗ 0.019∗∗∗ 0.017∗∗∗ 0.007 0.010∗ 0.007

(0.005) (0.006) (0.005) (0.006) (0.006) (0.006)

River dummy 0.078∗∗∗ 0.075∗∗∗

(0.011) (0.011)

River density 1.933∗∗∗ 1.840∗∗∗

(0.670) (0.660)

Log river length 0.021∗∗∗ 0.020∗∗∗

(0.003) (0.003)

Ag. suit. rainfed 0.074∗∗∗ 0.094∗∗∗ 0.073∗∗∗ 0.124∗∗∗ 0.140∗∗∗ 0.122∗∗∗

(0.027) (0.028) (0.027) (0.031) (0.032) (0.031)

Ag. suit. irrig. −0.102∗∗∗ −0.101∗∗∗ −0.103∗∗∗ −0.100∗∗∗ −0.099∗∗∗ −0.101∗∗∗

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

Rainfall 0.049∗∗∗ 0.048∗∗∗ 0.051∗∗∗ 0.064∗∗∗ 0.061∗∗∗ 0.065∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.013) (0.012)

Log dist. to coast −0.108∗∗∗ −0.046 −0.104∗∗∗ −0.104∗∗∗ −0.037 −0.099∗∗∗

(0.037) (0.035) (0.037) (0.036) (0.034) (0.036)

Coast dummy −0.059∗∗∗ −0.064∗∗∗

(0.014) (0.014)

Coastline density 0.035∗∗∗ 0.023∗

(0.013) (0.013)

Log coastline length −0.014∗∗∗ −0.015∗∗∗

(0.003) (0.003)

Log dist. to steppe 0.103∗∗∗ 0.110∗∗∗ 0.104∗∗∗ 0.168∗∗∗ 0.168∗∗∗ 0.167∗∗∗

(0.028) (0.029) (0.028) (0.032) (0.032) (0.032)

Steppe dummy 0.027∗ 0.032∗∗ 0.027∗ 0.045∗∗∗ 0.048∗∗∗ 0.044∗∗

(0.016) (0.016) (0.016) (0.017) (0.017) (0.017)

Log land area 0.014∗∗∗ 0.036∗∗∗ 0.017∗∗∗ 0.012∗∗∗ 0.032∗∗∗ 0.015∗∗∗

(0.004) (0.006) (0.004) (0.004) (0.006) (0.004)

R2 0.14 0.13 0.14 0.15 0.13 0.15

Number of obs. 5202 5202 5202 5202 5202 5202

Latitude control No No No Yes Yes Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming

spatial autocorrelation among observations within 1.45 degrees of each other. * indicates p <0.10,

** p <0.05, and *** p <0.01.
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Table E.7: Geography and border frequency: logged and non-logged variables.

Dependent variable: Border frequency 1500-2000

(1) (2) (3) (4)

Mountain >2000m 0.146∗∗∗ 0.140∗∗∗ 0.113∗∗∗ 0.133∗∗∗

(0.043) (0.043) (0.041) (0.045)

Log ruggedness 0.007 0.006 0.012∗

(0.006) (0.006) (0.006)

Ruggedness 0.000∗∗∗

(0.000)

River dummy 0.075∗∗∗ 0.075∗∗∗ 0.076∗∗∗ 0.078∗∗∗

(0.011) (0.011) (0.011) (0.011)

Ag. suit. rainfed 0.124∗∗∗ 0.130∗∗∗ 0.132∗∗∗ 0.088∗∗∗

(0.031) (0.032) (0.031) (0.031)

Ag. suit. irrig. −0.100∗∗∗ −0.097∗∗∗ −0.092∗∗∗ −0.108∗∗∗

(0.021) (0.021) (0.020) (0.021)

Rainfall 0.064∗∗∗ 0.065∗∗∗ 0.056∗∗∗

(0.012) (0.013) (0.012)

Log rainfall 0.054∗∗∗

(0.007)

Log dist. to coast −0.104∗∗∗ −0.113∗∗∗

(0.036) (0.035)

Distance to coast −0.077∗∗∗ −0.068∗∗∗

(0.023) (0.022)

Coast dummy −0.064∗∗∗ −0.064∗∗∗ −0.061∗∗∗ −0.064∗∗∗

(0.014) (0.014) (0.014) (0.014)

Log dist. to steppe 0.168∗∗∗ 0.219∗∗∗

(0.032) (0.033)

Distance to steppe 0.197∗∗∗ 0.210∗∗∗

(0.041) (0.040)

Steppe dummy 0.045∗∗∗ 0.031∗ 0.033∗∗ 0.024

(0.017) (0.016) (0.016) (0.017)

Log land area 0.012∗∗∗ 0.011∗∗∗ 0.009∗∗ 0.015∗∗∗

(0.004) (0.004) (0.004) (0.004)

R2 0.15 0.15 0.15 0.15

Number of obs. 5202 5202 5202 5202

Logged or

non-logged

alteration

Benchmark
Non-logged

distances

Non-logged

distances

& ruggedness

Benchmark

with logged

rainfall

Notes: Ordinary least squares regressions with Conley standard errors in parenthe-

ses assuming spatial autocorrelation among observations within 1.45 degrees of each

other. All specifications include latitude controls (not reported). * indicates p <0.10,

** p <0.05, and *** p <0.01.
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Table F.1: Geography and border frequency: standardized coefficients and robust standard

errors.

Dependent variable: Border frequency 1500-2000

(1) (2) (3) (4) (5) (6)

Mountain >2000m 0.074∗∗∗ 0.084∗∗∗ 0.092∗∗∗

(0.030) (0.030) (0.029)

Mountain >1000m 0.030∗ 0.038∗∗ 0.080∗∗∗

(0.013) (0.013) (0.013)

Log ruggedness 0.090∗∗∗ 0.090∗∗∗ 0.039∗∗ 0.040∗∗ 0.089∗∗∗ 0.078∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

River dummy 0.148∗∗∗ 0.148∗∗∗ 0.142∗∗∗ 0.142∗∗∗ 0.125∗∗∗ 0.124∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Ag. suit. rainfed 0.085∗∗∗ 0.079∗∗∗ 0.142∗∗∗ 0.132∗∗∗ 0.023 0.016

(0.015) (0.016) (0.018) (0.018) (0.018) (0.018)

Ag. suit. irrig. −0.124∗∗∗ −0.123∗∗∗ −0.122∗∗∗ −0.120∗∗∗ −0.123∗∗∗ −0.116∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Rainfall 0.176∗∗∗ 0.179∗∗∗ 0.228∗∗∗ 0.227∗∗∗ 0.080∗∗∗ 0.078∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.007) (0.007)

Log dist. to coast −0.084∗∗∗ −0.080∗∗∗ −0.081∗∗∗ −0.077∗∗∗ −0.044∗∗ −0.040∗∗

(0.019) (0.019) (0.018) (0.018) (0.022) (0.022)

Coast dummy −0.108∗∗∗ −0.108∗∗∗ −0.118∗∗∗ −0.116∗∗∗ −0.091∗∗∗ −0.079∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Log dist. to steppe 0.134∗∗∗ 0.129∗∗∗ 0.219∗∗∗ 0.208∗∗∗ 0.394∗∗∗ 0.388∗∗∗

(0.015) (0.015) (0.017) (0.017) (0.022) (0.021)

Steppe dummy 0.034∗∗∗ 0.031∗∗∗ 0.057∗∗∗ 0.052∗∗∗ 0.060∗∗∗ 0.056∗∗∗

(0.009) (0.009) (0.010) (0.010) (0.011) (0.011)

Log land area 0.058∗∗∗ 0.058∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.050∗∗∗ 0.051∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

R2 0.14 0.14 0.15 0.15 0.24 0.24

Number of obs. 5202 5202 5202 5202 5202 5202

Latitude (Control/FE) None None Control Control Fixed effects Fixed effects

Summed absolute

values of coefficients
1.057 0.997 1.232 1.152 1.121 1.055

Notes: Ordinary least squares regressions with standardized (beta) coefficients and robust standard errors.

* indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table G.1: Geography and border frequency: nine-cell artificial country fixed effects.

Dependent variable:

Border frequency 1500-2000
Border freq.

1300-1800

(1) (2) (3) (4) (5) (6) (7)

Mountain >2000m 0.043 0.046 0.017 0.016 0.037

(0.032) (0.031) (0.027) (0.026) (0.023)

Mountain >1000m 0.047∗∗∗ 0.044∗∗

(0.018) (0.019)

Log ruggedness 0.024∗∗∗ 0.022∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006)

River dummy 0.027∗∗∗ 0.027∗∗∗ 0.030∗∗∗ 0.026∗∗∗ 0.027∗∗∗ 0.024∗∗∗ 0.025∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Ag. suit. rainfed −0.062∗ −0.057∗ −0.082∗∗ −0.087∗∗ −0.084∗∗ −0.080∗∗ −0.075∗∗

(0.036) (0.034) (0.035) (0.034) (0.036) (0.036) (0.034)

Ag. suit. irrig. −0.006 −0.002 −0.006 0.001 0.011 −0.013 −0.009

(0.018) (0.018) (0.018) (0.017) (0.018) (0.019) (0.019)

Rainfall 0.060∗∗∗ 0.063∗∗∗ 0.060∗∗∗ 0.023 0.046∗∗ 0.064∗∗∗ 0.067∗∗∗

(0.018) (0.018) (0.018) (0.015) (0.019) (0.019) (0.019)

Log dist. to coast 0.033 0.019 0.017 −0.124 −0.046 −0.007 −0.021

(0.114) (0.114) (0.113) (0.111) (0.109) (0.126) (0.125)

Coast dummy 0.001 0.005 0.002 −0.010 −0.005 −0.011 −0.008

(0.012) (0.012) (0.012) (0.012) (0.012) (0.014) (0.014)

Log dist. to steppe −0.074 −0.090 −0.055 −0.089 −0.084 −0.027 −0.044

(0.128) (0.128) (0.166) (0.125) (0.126) (0.132) (0.131)

Steppe dummy −0.044∗∗ −0.041∗∗ −0.053∗∗∗ −0.038∗∗ −0.052∗∗∗ −0.047∗∗∗ −0.043∗∗∗

(0.017) (0.017) (0.017) (0.015) (0.017) (0.017) (0.016)

Log land area 0.009∗∗ 0.009∗∗ 0.010∗∗ 0.012∗∗∗ 0.007∗ 0.025∗∗∗ 0.025∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)

R2 0.61 0.61 0.61 0.50 0.47 0.65 0.66

Number of obs. 5202 5202 5202 4566 4664 5095 5095

Artificial country FE Yes Yes Yes Yes Yes Yes Yes

Latitude (Control/FE) Control Control FE Control Control Control Control

Drop Western Europe No No No Yes No No No

Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocor-

relation among observations within 1.45 degrees of each other. The specifications are the same as in Table 3 in

the paper, except that they all include fixed effects for artificial regions of nine cells. * indicates p <0.10, **

p <0.05, and *** p <0.01.
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Table G.2: Borders and modern outcomes: nine-cell artificial country fixed effects.

Panel A Dependent variable: Log night lights

(1) (2) (3) (4) (5) (6) (7)

Border frequency 1500-2000 −0.158∗∗∗ −0.134∗∗∗ −0.136∗∗∗ −0.255∗∗∗ −0.188∗∗∗

(0.055) (0.051) (0.049) (0.061) (0.061)

Border frequency 1300-1800 −0.112∗∗ −0.114∗∗

(0.048) (0.047)

R2 0.70 0.74 0.75 0.73 0.72 0.74 0.75

Number of obs. 5202 5202 5202 4566 4664 5095 5095

Panel B Dependent variable: Log population density

Border frequency 1500-2000 −0.255∗∗∗ −0.228∗∗∗ −0.238∗∗∗ −0.356∗∗∗ −0.307∗∗∗

(0.083) (0.076) (0.074) (0.088) (0.091)

Border frequency 1300-1800 −0.192∗∗∗ −0.208∗∗∗

(0.070) (0.068)

R2 0.71 0.74 0.75 0.75 0.74 0.73 0.74

Number of obs. 5201 5201 5201 4565 4663 5094 5094

Artificial country FE Yes Yes Yes Yes Yes Yes Yes

Geography controls No Yes Yes Yes Yes Yes Yes

Latitude (Control/FE) None Control FE Control Control Control FE

Drop Western Europe No No No Yes No No No

Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation

among observations within 1.45 degrees of each other. The specifications are the same as in Table 5 in the paper,

except that they all include fixed effects for artificial regions of nine cells. * indicates p <0.10, ** p <0.05, and ***

p <0.01.
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Table H.1: Geography and border frequency: modern country fixed effects.

Dependent variable:

Border frequency 1500-2000
Border freq.

1300-1800

(1) (2) (3) (4) (5) (6) (7)

Mountain >2000m 0.016 0.019 0.020 0.016 0.018

(0.018) (0.019) (0.017) (0.016) (0.020)

Mountain >1000m 0.035∗∗∗ 0.048∗∗∗

(0.011) (0.015)

Log ruggedness 0.012∗∗∗ 0.010∗∗ 0.017∗∗∗ 0.007∗ 0.008∗∗ 0.017∗∗∗ 0.014∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.006) (0.006)

River dummy 0.019∗∗∗ 0.020∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.026∗∗∗ 0.026∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.005) (0.007) (0.007)

Ag. suit. rainfed 0.023 0.029 0.016 0.016 0.014 0.022 0.031

(0.019) (0.018) (0.019) (0.020) (0.019) (0.025) (0.024)

Ag. suit. irrig. −0.019 −0.017 −0.029∗∗∗ −0.018 −0.022∗∗ −0.003 0.001

(0.012) (0.012) (0.011) (0.012) (0.011) (0.015) (0.015)

Rainfall 0.019∗∗∗ 0.021∗∗∗ 0.001 0.012 0.001 0.036∗∗∗ 0.039∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.005) (0.011) (0.011)

Log dist. to coast −0.035 −0.038 −0.030 −0.066∗∗ −0.051∗∗ −0.078∗ −0.083∗∗

(0.028) (0.028) (0.034) (0.027) (0.025) (0.040) (0.040)

Coast dummy −0.019∗∗ −0.014∗ −0.014∗ −0.014 −0.002 −0.035∗∗∗ −0.029∗∗

(0.008) (0.008) (0.008) (0.009) (0.007) (0.012) (0.012)

Log dist. to steppe 0.055∗∗ 0.061∗∗∗ 0.158∗∗∗ 0.033 0.007 0.135∗∗∗ 0.145∗∗∗

(0.023) (0.023) (0.040) (0.022) (0.020) (0.032) (0.032)

Steppe dummy 0.008 0.011 0.007 0.000 −0.012 0.030∗∗∗ 0.034∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.008) (0.011) (0.011)

Log land area 0.005∗ 0.005∗ 0.002 0.008∗∗∗ 0.004∗ 0.013∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.002) (0.004) (0.004)

R2 0.73 0.73 0.74 0.61 0.67 0.63 0.64

Number of obs. 5199 5199 5199 4563 4661 5092 5092

Modern country FE Yes Yes Yes Yes Yes Yes Yes

Latitude (Control/FE) Control Control FE Control Control Control Control

Drop Western Europe No No No Yes No No No

Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocor-

relation among observations within 1.45 degrees of each other. The specifications are the same as in Table 3 in

the paper, except that they all include fixed effects for modern countries from GADM. * indicates p <0.10, **

p <0.05, and *** p <0.01.
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Table H.2: Borders and modern outcomes: modern country fixed effects.

Panel A Dependent variable: Log night lights

(1) (2) (3) (4) (5) (6) (7)

Border frequency 1500-2000 0.024 0.074 −0.047 0.009 0.034

(0.086) (0.084) (0.083) (0.096) (0.099)

Border frequency 1300-1800 −0.021 −0.092

(0.066) (0.065)

R2 0.44 0.54 0.58 0.51 0.50 0.54 0.57

Number of obs. 5199 5199 5199 4563 4661 5092 5092

Panel B Dependent variable: Log population density

Border frequency 1500-2000 −0.013 0.130 −0.078 0.101 0.130

(0.128) (0.122) (0.118) (0.138) (0.144)

Border frequency 1300-1800 0.033 −0.103

(0.095) (0.092)

R2 0.40 0.51 0.55 0.50 0.49 0.50 0.54

Number of obs. 5198 5198 5198 4562 4660 5091 5091

Modern country FE Yes Yes Yes Yes Yes Yes Yes

Geography controls No Yes Yes Yes Yes Yes Yes

Latitude (Control/FE) None Control FE Control Control Control FE

Drop Western Europe No No No Yes No No No

Drop HRE No No No No Yes No No

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation

among observations within 1.45 degrees of each other. The specifications are the same as in Table 5 in the paper,

except that they all include fixed effects for modern countries from GADM. * indicates p <0.10, ** p <0.05, and ***

p <0.01.
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Table I.1: Borders and urbanization: the period 1300-1800.

Dependent variable: Log urban populationt

(1) (2) (3) (4) (5) (6)

Log urban pop.t−1 0.714∗∗∗ 0.712∗∗∗ 0.713∗∗∗ 0.231∗∗∗ 0.234∗∗∗ 0.231∗∗∗

(0.012) (0.012) (0.012) (0.027) (0.027) (0.027)

Border dummyt −0.105∗∗ −0.225∗∗∗ −0.326∗∗∗ −0.325∗∗∗

(0.046) (0.059) (0.070) (0.070)

Border dummyt−1 0.063 0.192∗∗∗ −0.027 −0.019

(0.044) (0.056) (0.068) (0.067)

R2 0.61 0.61 0.61 0.73 0.73 0.73

Number of obs. 3220 3220 3220 3220 3220 3220

Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with

644 cells and six centuries (1300-1800); the first century is dropped due to the lagged variables. Log urban

population is from Bosker et al. (2013), and measures the log population of all cities in a cell that exceed 10,000

people. Columns (1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell

and century fixed effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table I.2: Borders and urbanization: the period 800-1800.

Dependent variable: Log urban populationt

(1) (2) (3) (4) (5) (6)

Log urban pop.t−1 0.795∗∗∗ 0.795∗∗∗ 0.795∗∗∗ 0.516∗∗∗ 0.515∗∗∗ 0.516∗∗∗

(0.008) (0.009) (0.008) (0.018) (0.018) (0.018)

Border dummyt −0.062∗∗ −0.102∗∗∗ −0.091∗∗∗ −0.109∗∗∗

(0.030) (0.034) (0.034) (0.036)

Border dummyt−1 0.024 0.077∗∗ 0.023 0.057

(0.030) (0.035) (0.034) (0.036)

R2 0.68 0.68 0.68 0.73 0.73 0.73

Number of obs. 5980 5980 5980 5980 5980 5980

Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with

598 cells and eleven centuries (800-1800); the first century is dropped due to the lagged variables. Log urban

population is from Bosker et al. (2013), and measures the log population of all cities in a cell that exceed 10,000

people. Columns (1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell

and century fixed effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table I.3: Borders and urbanization: fraction urban from HYDE.

Dependent variable: Fraction urbant

(1) (2) (3) (4) (5) (6)

Fraction urbant−1 1.025∗∗∗ 1.025∗∗∗ 1.024∗∗∗ 0.802∗∗∗ 0.804∗∗∗ 0.802∗∗∗

(0.007) (0.007) (0.007) (0.012) (0.012) (0.012)

Border dummyt −0.003 −0.006∗∗ −0.011∗∗∗ −0.011∗∗∗

(0.002) (0.003) (0.003) (0.003)

Border dummyt−1 0.003∗ 0.006∗∗∗ 0.002 0.002

(0.002) (0.002) (0.003) (0.003)

R2 0.81 0.81 0.81 0.85 0.85 0.85

Number of obs. 25125 25125 25125 25125 25125 25125

Cell FE No No No Yes Yes Yes

Notes: Ordinary least squares regressions with robust standard errors in parentheses, based on a panel with 5025

cells and six centuries (1500-2000); the first century is dropped due to the lagged variables. The fraction urban

is based data from HYDE, and defined as urban population as a fraction of total population in a cell. Columns

(1)-(3) include century fixed effects and geography controls, and columns (4)-(6) include cell and century fixed

effects. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table K.1: Borders and geography: using Abramson data.

Dependent variable: Border frequency 1500-1790/1800

(1) (2) (3) (4) (5) (6)

Mountain >2000m 0.146∗∗∗ 0.424∗∗∗ 0.256∗∗ 0.160∗∗∗ 0.362∗∗∗ 0.161∗

(0.040) (0.089) (0.119) (0.038) (0.097) (0.096)

Log ruggedness 0.005 −0.018 −0.023∗∗ 0.019∗∗∗ 0.020∗ 0.020∗

(0.007) (0.011) (0.011) (0.007) (0.010) (0.011)

River dummy 0.077∗∗∗ 0.076∗∗∗ 0.096∗∗∗ 0.069∗∗∗ 0.068∗∗∗ 0.082∗∗∗

(0.012) (0.014) (0.016) (0.011) (0.014) (0.014)

Ag. suit. rainfed 0.151∗∗∗ 0.085∗ 0.115∗∗ 0.027 −0.042 −0.037

(0.036) (0.045) (0.048) (0.034) (0.045) (0.048)

Ag. suit. irrig. −0.120∗∗∗ −0.154∗∗∗ −0.142∗∗∗ −0.122∗∗∗ −0.121∗∗∗ −0.099∗∗∗

(0.025) (0.029) (0.031) (0.026) (0.029) (0.032)

Rainfall 0.071∗∗∗ 0.073∗∗∗ 0.083∗∗∗ 0.026∗ 0.025 0.028

(0.014) (0.018) (0.019) (0.014) (0.017) (0.017)

Log dist. to coast −0.135∗∗∗ −0.014 −0.050 −0.100∗∗ −0.076 −0.099

(0.043) (0.065) (0.065) (0.048) (0.064) (0.073)

Coast dummy −0.068∗∗∗ −0.086∗∗∗ −0.101∗∗∗ −0.052∗∗∗ −0.070∗∗∗ −0.082∗∗∗

(0.017) (0.021) (0.023) (0.016) (0.020) (0.021)

Log dist. to steppe 0.228∗∗∗ 0.368∗∗∗ 0.342∗∗∗ 0.362∗∗∗ 0.403∗∗∗ 0.382∗∗∗

(0.041) (0.067) (0.060) (0.055) (0.065) (0.067)

Steppe dummy 0.049∗∗∗ 0.034 0.043 0.053∗∗∗ 0.017 0.018

(0.017) (0.027) (0.031) (0.018) (0.028) (0.033)

Log land area 0.013∗∗ 0.032∗∗∗ 0.033∗∗∗ 0.013∗∗ 0.020∗∗ 0.021∗∗

(0.005) (0.008) (0.008) (0.005) (0.008) (0.008)

R2 0.15 0.16 0.15 0.24 0.26 0.25

Number of obs. 5202 3861 3861 5202 3861 3861

Border variable Euratlas Euratlas Abramson Euratlas Euratlas Abramson

Sample Euratlas Abramson Abramson Euratlas Abramson Abramson

Latitude (Control/FE) Control Control Control FE FE FE

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-

correlation among observations within 1.45 degrees of each other. The dependent variable is border frequency

1500-1800, or 1500-1790, for the Euratlas and Abramson data, respectively. Columns (2) and (5) use border

frequency based on Euratlas, but restricts the sample to cells where Abramson data are not missing. * indicates

p <0.10, ** p <0.05, and *** p <0.01.

44



Table K.2: Borders and modern outcomes: using Abramson data.

Dependent variable:

Log night lights Log population density

(1) (2) (3) (4) (5) (6)

Border frequency 1500-1790/1800 0.557∗∗∗ 0.552∗∗∗ 0.607∗∗∗ 0.846∗∗∗ 0.746∗∗∗ 0.800∗∗∗

(0.079) (0.082) (0.074) (0.117) (0.115) (0.106)

R2 0.33 0.28 0.29 0.32 0.31 0.32

Number of obs. 5202 3861 3861 5201 3860 3860

Border variable Euratlas Euratlas Abramson Euratlas Euratlas Abramson

Sample Euratlas Abramson Abramson Euratlas Abramson Abramson

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation

among observations within 1.45 degrees of each other. All specifications include the benchmark set of geography controls and

latitude (not reported). The independent variable of interest is border frequency 1500-1800, or 1500-1790, for the Euratlas

and Abramson data, respectively. Columns (2) and (5) use border frequency based on Euratlas, but restricts the sample to

cells where Abramson data are not missing. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table K.3: Border frequency inside and outside the HRE in the Euratlas and Abramson

data.

Inside the HRE Outside the HRE

Ratio border frequency

inside the HRE

to outside the HRE

Euratlas Abramson Euratlas Abramson Euratlas Abramson

Number

of cells
538 535 4664 3326

Border

frequency
0.65 0.69 0.08 0.09 8.12 7.67

Notes: Average border frequency among cells located inside and outside the Holy Roman Empire, ac-

cording to the Euratlas and Abramson data. Border frequency is measured over the period 1500-1800

for the Euratlas data and 1500-1790 for the Abramson data. Cells inside the HRE are those that were

ever covered by the HRE in any century 1500-1800 according to the Euratlas data.
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Table L.1: Borders and modern outcomes: other outcome variables.

Panel A Dependent variable: log night lights (per area)

(1) (2) (3) (4) (5)

Border frequency 1500-2000 0.680∗∗∗ 0.513∗∗∗ 0.210∗∗∗ −0.045 −0.184∗∗

(0.097) (0.093) (0.075) (0.101) (0.088)

R2 0.03 0.32 0.40 0.30 0.33

Number of obs. 5202 5202 5202 4566 4664

Panel B Dependent variable: log population density

Border frequency 1500-2000 1.157∗∗∗ 0.853∗∗∗ 0.323∗∗∗ 0.261∗ 0.080

(0.134) (0.137) (0.107) (0.147) (0.140)

R2 0.03 0.31 0.43 0.33 0.32

Number of obs. 5201 5201 5201 4565 4663

Panel C Dependent variable: log GDP per capita

Border frequency 1500-2000 0.509∗∗∗ 0.257∗∗∗ 0.129∗ −0.264∗∗∗ −0.351∗∗∗

(0.104) (0.078) (0.072) (0.090) (0.098)

R2 0.01 0.26 0.30 0.24 0.25

Number of obs. 4949 4949 4949 4314 4411

Panel D Dependent variable: log GDP per area

Border frequency 1500-2000 0.524∗∗∗ 0.518∗∗∗ 0.348∗∗∗ −0.131 −0.253∗

(0.119) (0.129) (0.113) (0.142) (0.138)

R2 0.01 0.14 0.23 0.15 0.15

Number of obs. 4993 4993 4993 4358 4455

Panel E Dependent variable: log population density in 1800

Border frequency 1500-2000 1.275∗∗∗ 0.655∗∗∗ 0.173∗∗ 0.143 −0.078

(0.117) (0.108) (0.073) (0.112) (0.104)

R2 0.07 0.48 0.59 0.45 0.48

Number of obs. 5150 5150 5150 4517 4612

Geography controls No Yes Yes Yes Yes

Latitude (Control/FE) None Control FE Control Control

Drop Western Europe No No No Yes No

Drop HRE No No No No Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming

spatial autocorrelation among observations within 1.45 degrees of each other. The specifications in

Panels A and B are identical to the first five columns of Table 5 in the paper. * indicates p <0.10,

** p <0.05, and *** p <0.01.
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Table L.2: Borders and modern outcomes: other outcome variables and using borders

1300-1800.

Panel A Dependent variable: log night lights (per area)

(1) (2) (3) (4) (5)

Border frequency 1300-1800 0.683∗∗∗ 0.483∗∗∗ 0.252∗∗∗ −0.053 −0.254∗∗∗

(0.085) (0.085) (0.070) (0.100) (0.091)

R2 0.04 0.31 0.39 0.29 0.31

Number of obs. 5095 5095 5095 4459 4522

Panel B Dependent variable: log population density

Border frequency 1300-1800 1.021∗∗∗ 0.770∗∗∗ 0.311∗∗∗ 0.152 −0.071

(0.119) (0.126) (0.098) (0.137) (0.138)

R2 0.04 0.30 0.42 0.31 0.31

Number of obs. 5094 5094 5094 4458 4521

Panel C Dependent variable: log GDP per capita

Border frequency 1300-1800 0.664∗∗∗ 0.324∗∗∗ 0.251∗∗∗ −0.141∗ −0.283∗∗∗

(0.082) (0.068) (0.065) (0.082) (0.093)

R2 0.03 0.28 0.31 0.25 0.26

Number of obs. 4872 4872 4872 4237 4299

Panel D Dependent variable: log GDP per area

Border frequency 1300-1800 0.472∗∗∗ 0.488∗∗∗ 0.350∗∗∗ −0.151 −0.344∗∗

(0.106) (0.123) (0.113) (0.142) (0.144)

R2 0.01 0.14 0.23 0.16 0.16

Number of obs. 4908 4908 4908 4273 4335

Panel E Dependent variable: log population density in 1800

Border frequency 1300-1800 1.306∗∗∗ 0.688∗∗∗ 0.270∗∗∗ 0.217∗∗ −0.039

(0.097) (0.098) (0.069) (0.107) (0.108)

R2 0.10 0.48 0.58 0.44 0.47

Number of obs. 5046 5046 5046 4413 4473

Geography controls No Yes Yes Yes Yes

Latitude (Control/FE) None Control FE Control Control

Drop Western Europe No No No Yes No

Drop HRE No No No No Yes

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming

spatial autocorrelation among observations within 1.45 degrees of each other. The specifications

in Panels A and B of columns (2) and (3) are identical to columns (6) and (7) of Table 5 in the

paper. * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table M.1: Borders and geography: controlling for preindustrial population density and

urbanization.

Dependent variable: border frequency 1500-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Mountain >2000m 0.146∗∗∗ −0.101 −0.092 0.148∗∗∗ 0.147∗∗∗ 0.149∗∗∗ 0.147∗∗∗ 0.157∗∗∗

(0.043) (0.071) (0.073) (0.043) (0.043) (0.043) (0.044) (0.044)

Log ruggedness 0.007 0.002 0.003 0.006 0.006 0.006 0.003 0.006

(0.006) (0.013) (0.013) (0.006) (0.006) (0.006) (0.006) (0.006)

River dummy 0.075∗∗∗ 0.089∗∗∗ 0.085∗∗∗ 0.071∗∗∗ 0.073∗∗∗ 0.069∗∗∗ 0.060∗∗∗ 0.053∗∗∗

(0.011) (0.024) (0.025) (0.011) (0.011) (0.011) (0.011) (0.011)

Ag. suit. rainfed 0.124∗∗∗ 0.193∗∗ 0.199∗∗ 0.121∗∗∗ 0.123∗∗∗ 0.125∗∗∗ 0.080∗∗∗ 0.074∗∗

(0.031) (0.080) (0.079) (0.032) (0.032) (0.032) (0.030) (0.030)

Ag. suit. irrig. −0.100∗∗∗ −0.117∗∗ −0.120∗∗ −0.105∗∗∗ −0.103∗∗∗ −0.107∗∗∗ −0.125∗∗∗ −0.138∗∗∗

(0.021) (0.055) (0.055) (0.021) (0.021) (0.021) (0.022) (0.022)

Rainfall 0.064∗∗∗ 0.111∗∗∗ 0.113∗∗∗ 0.065∗∗∗ 0.066∗∗∗ 0.065∗∗∗ 0.054∗∗∗ 0.046∗∗∗

(0.012) (0.032) (0.032) (0.013) (0.013) (0.013) (0.013) (0.013)

Log dist. to coast −0.104∗∗∗ 0.004 0.017 −0.093∗∗ −0.096∗∗∗ −0.092∗∗ −0.059∗ −0.039

(0.036) (0.166) (0.164) (0.037) (0.037) (0.037) (0.036) (0.036)

Coast dummy −0.064∗∗∗ −0.064∗ −0.061∗ −0.066∗∗∗ −0.064∗∗∗ −0.065∗∗∗ −0.075∗∗∗ −0.076∗∗∗

(0.014) (0.035) (0.034) (0.015) (0.014) (0.014) (0.014) (0.014)

Log dist. to steppe 0.168∗∗∗ 0.462∗∗∗ 0.456∗∗∗ 0.176∗∗∗ 0.177∗∗∗ 0.177∗∗∗ 0.159∗∗∗ 0.132∗∗∗

(0.032) (0.100) (0.100) (0.033) (0.034) (0.034) (0.031) (0.029)

Steppe dummy 0.045∗∗∗ 0.111∗∗∗ 0.112∗∗∗ 0.044∗∗ 0.045∗∗∗ 0.045∗∗ 0.043∗∗ 0.046∗∗∗

(0.017) (0.040) (0.039) (0.018) (0.018) (0.018) (0.017) (0.017)

Log land area 0.012∗∗∗ −0.024 −0.027 0.015∗∗ 0.015∗∗ 0.016∗∗∗ −0.006 0.011∗∗

(0.004) (0.025) (0.025) (0.006) (0.006) (0.006) (0.006) (0.005)

Log city pop. 1500-1800 −0.011

(0.009)

Log city pop. in 1500 0.006

(0.007)

Fraction urban 1500-2000 0.039

(0.031)

Fraction urban 1500-1800 0.024

(0.037)

Fraction urban 1500 0.090∗∗

(0.040)

Log pop. dens. 1500-1800 0.021∗∗∗

(0.004)

Log pop. dens. in 1500 0.049∗∗∗

(0.008)

R2 0.15 0.23 0.23 0.15 0.15 0.15 0.16 0.18

Number of obs. 5202 644 644 5025 5035 5036 5150 5150

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications include latitude controls (not reported). * indicates p <0.10, **

p <0.05, and *** p <0.01.
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Table M.2: Borders and modern outcomes: controlling for preindustrial urbanization from

Bosker et al. (2013).

Dependent variable:

Log night lights Log population density

(1) (2) (3) (4) (5) (6)

Border frequency 1500-2000 0.513∗∗∗ 0.535∗∗∗ 0.469∗∗∗ 0.853∗∗∗ 0.587∗∗∗ 0.463∗∗

(0.093) (0.151) (0.151) (0.137) (0.223) (0.224)

Log city pop. 1500-1800 0.196∗∗∗ 0.371∗∗∗

(0.030) (0.054)

Log city pop. in 1500 0.129∗∗∗ 0.228∗∗∗

(0.021) (0.036)

R2 0.32 0.47 0.40 0.31 0.44 0.34

Number of obs. 5202 644 644 5201 644 644

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-

correlation among observations within 1.45 degrees of each other. All specifications include controls for the

benchmark set of geography controls and latitude (not reported). * indicates p <0.10, ** p <0.05, and ***

p <0.01.
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Table M.3: Borders and modern outcomes: controlling for preindustrial urbanization from

HYDE.

Panel A Dependent variable: log night lights

(1) (2) (3) (4)

Border frequency 1500-2000 0.513∗∗∗ 0.448∗∗∗ 0.479∗∗∗ 0.450∗∗∗

(0.093) (0.072) (0.083) (0.086)

Fraction urban 1500-2000 3.074∗∗∗

(0.101)

Fraction urban 1500-1800 2.749∗∗∗

(0.145)

Fraction urban 1500 2.313∗∗∗

(0.153)

R2 0.32 0.53 0.42 0.38

Number of obs. 5202 5025 5035 5036

Panel B Dependent variable: log population density

Border frequency 1500-2000 0.853∗∗∗ 0.747∗∗∗ 0.793∗∗∗ 0.764∗∗∗

(0.137) (0.114) (0.127) (0.130)

Fraction urban 1500-2000 3.977∗∗∗

(0.159)

Fraction urban 1500-1800 3.114∗∗∗

(0.211)

Fraction urban 1500 2.420∗∗∗

(0.218)

R2 0.31 0.44 0.35 0.32

Number of obs. 5201 5025 5035 5036

Notes: Ordinary least squares regressions with Conley standard errors in parenthe-

ses assuming spatial autocorrelation among observations within 1.45 degrees of each

other. All specifications include controls for the benchmark set of geography controls

and latitude (not reported). * indicates p <0.10, ** p <0.05, and *** p <0.01.
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Table M.4: Borders and modern outcomes: controlling for preindustrial population density

from HYDE.

Dependent variable:

Log night lights Log population density

(1) (2) (3) (4) (5) (6)

Border frequency 1500-2000 0.513∗∗∗ 0.100∗ 0.119∗∗ 0.853∗∗∗ 0.236∗∗∗ 0.265∗∗∗

(0.093) (0.056) (0.058) (0.137) (0.089) (0.093)

Log pop. density 1500-1800 0.653∗∗∗ 0.975∗∗∗

(0.017) (0.032)

Log population density in 1500 0.639∗∗∗ 0.952∗∗∗

(0.018) (0.033)

R2 0.32 0.64 0.60 0.31 0.59 0.56

Number of obs. 5202 5150 5150 5201 5150 5150

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial auto-

correlation among observations within 1.45 degrees of each other. All specifications include controls for the

benchmark set of geography controls and latitude (not reported). * indicates p <0.10, ** p <0.05, and ***

p <0.01.

52



Table N.1: Geography and border frequency: using alternative time periods.

Dependent variable:

Border frequency

1300-1800

Border frequency

1300-1900

Border frequency

1300-2000

Border frequency

800-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Mountain >2000m 0.126∗∗∗ 0.117∗∗∗ 0.133∗∗∗ 0.095∗∗∗

(0.038) (0.037) (0.040) (0.033)

Mountain >1000m 0.033 0.034∗ 0.035∗ 0.019

(0.021) (0.020) (0.020) (0.015)

Log ruggedness 0.010 0.010 0.011∗ 0.010 0.011∗ 0.010 0.016∗∗∗ 0.016∗∗∗

(0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

River dummy 0.072∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.062∗∗∗ 0.061∗∗∗

(0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Ag. suit. rainfed 0.137∗∗∗ 0.130∗∗∗ 0.121∗∗∗ 0.115∗∗∗ 0.122∗∗∗ 0.115∗∗∗ 0.114∗∗∗ 0.106∗∗∗

(0.037) (0.037) (0.034) (0.034) (0.033) (0.033) (0.032) (0.032)

Ag. suit. irrig. −0.089∗∗∗ −0.087∗∗∗ −0.079∗∗∗ −0.076∗∗∗ −0.081∗∗∗ −0.078∗∗∗ −0.095∗∗∗ −0.092∗∗∗

(0.025) (0.025) (0.023) (0.023) (0.021) (0.021) (0.024) (0.024)

Rainfall 0.079∗∗∗ 0.079∗∗∗ 0.074∗∗∗ 0.074∗∗∗ 0.073∗∗∗ 0.073∗∗∗ 0.060∗∗∗ 0.059∗∗∗

(0.015) (0.015) (0.014) (0.014) (0.014) (0.014) (0.013) (0.013)

Log dist. to coast −0.171∗∗∗ −0.165∗∗∗ −0.151∗∗∗ −0.145∗∗∗ −0.137∗∗∗ −0.131∗∗∗ 0.024 0.035

(0.044) (0.044) (0.040) (0.040) (0.038) (0.038) (0.062) (0.063)

Coast dummy −0.080∗∗∗ −0.078∗∗∗ −0.076∗∗∗ −0.073∗∗∗ −0.073∗∗∗ −0.071∗∗∗ −0.044∗∗∗ −0.042∗∗∗

(0.018) (0.018) (0.016) (0.016) (0.015) (0.015) (0.015) (0.015)

Log dist. to steppe 0.250∗∗∗ 0.244∗∗∗ 0.224∗∗∗ 0.220∗∗∗ 0.201∗∗∗ 0.195∗∗∗ 0.100∗∗∗ 0.092∗∗∗

(0.040) (0.039) (0.036) (0.035) (0.033) (0.033) (0.034) (0.035)

Steppe dummy 0.041∗∗ 0.038∗∗ 0.039∗∗ 0.036∗∗ 0.042∗∗∗ 0.039∗∗ 0.028∗ 0.025

(0.016) (0.016) (0.015) (0.015) (0.016) (0.016) (0.015) (0.015)

Log land area 0.016∗∗∗ 0.017∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.004)

R2 0.18 0.18 0.18 0.18 0.18 0.18 0.22 0.22

Number of obs. 5095 5095 5095 5095 5095 5095 3269 3269

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications control for latitude (not reported). * indicates p <0.10, **

p <0.05, and *** p <0.01.
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Table N.2: Geography and border frequency: local deviations using alternative time peri-

ods.

Dependent variable:

∆ Border freq.

1300-1800

∆ Border freq.

1300-1900

∆ Border freq.

1300-2000

∆ Border freq.

800-2000

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Mountain >2000m 0.051∗ 0.041 0.054∗ 0.063∗∗

(0.029) (0.029) (0.031) (0.028)

∆ Mountain >1000m 0.061∗∗∗ 0.071∗∗∗ 0.075∗∗∗ 0.050∗∗∗

(0.018) (0.018) (0.017) (0.015)

∆ Log ruggedness 0.016∗∗∗ 0.015∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.020∗∗∗ 0.019∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.006)

∆ River dummy 0.036∗∗∗ 0.037∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.038∗∗∗ 0.037∗∗∗ 0.038∗∗∗

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.009) (0.009)

∆ Ag. suit. rainfed −0.102∗∗∗ −0.098∗∗∗ −0.107∗∗∗ −0.099∗∗∗ −0.104∗∗∗ −0.097∗∗∗ −0.072∗∗ −0.076∗∗

(0.037) (0.035) (0.036) (0.034) (0.035) (0.033) (0.031) (0.032)

∆ Ag. suit. irrig. −0.007 −0.001 −0.004 0.003 0.002 0.010 −0.009 0.000

(0.018) (0.018) (0.017) (0.017) (0.017) (0.017) (0.019) (0.019)

∆ Rainfall 0.077∗∗ 0.077∗∗ 0.076∗∗ 0.077∗∗ 0.074∗∗ 0.075∗∗ 0.048∗ 0.050∗

(0.032) (0.031) (0.030) (0.030) (0.030) (0.030) (0.027) (0.027)

∆ Log dist. to coast −0.224 −0.251 −0.168 −0.204 −0.169 −0.204 −0.058 −0.077

(0.260) (0.257) (0.244) (0.240) (0.239) (0.233) (0.239) (0.236)

∆ Coast dummy −0.012 −0.009 −0.010 −0.006 −0.012 −0.007 −0.015 −0.012

(0.015) (0.015) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

∆ Log dist. to steppe 0.124 0.145 0.112 0.132 0.027 0.051 −0.085 −0.087

(0.229) (0.231) (0.217) (0.216) (0.210) (0.209) (0.212) (0.213)

∆ Steppe dummy −0.006 −0.002 −0.006 −0.002 −0.010 −0.006 −0.015 −0.011

(0.015) (0.015) (0.013) (0.014) (0.014) (0.014) (0.013) (0.013)

∆ Log land area 0.022∗∗∗ 0.022∗∗∗ 0.019∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗

(0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

R2 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04

Number of obs. 5095 5095 5095 5095 5095 5095 3268 3268

Notes: Ordinary least squares regressions with Conley standard errors in parentheses assuming spatial autocorrelation among

observations within 1.45 degrees of each other. All specifications control for latitude (not reported and not in local deviations).

* indicates p <0.10, ** p <0.05, and *** p <0.01.
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