
Online Appendix to Multiple Steady Statehood

This Online Appendix explores some alternative ways to set up and interpret the model in

“Multiple Steady Statehood: The Roles of Productive and Extractive Capacities” by Nils-

Petter Lagerlöf. Equations and propositions referenced can be found in the original paper,

when not in these notes.

The model without investment in productive capacity: interior so-

lutions

Consider the setting without investment in productive capacity under the parametric case

where

B∗ < B < B∗∗. (A.1)

As in the paper, we denote the steady-state levels of zt and Yt under this parametric con-

figuration by zint and Y int, respectively. From Proposition 3, we recall that no steady state

can exist with zint = z (since B > B∗) or zint = z (since B < B∗∗). The steady state must

therefore be such that zint ∈ (z, z), and zintY int ∈ (X,X).

The dynamics of zt and Yt when ztYt ∈ (X,X) are given by (68) and (75), which we

restate here:

zt+1 =
β (φztYt + z)

1 + β(1− α)
, (A.2)

Yt+1 = Bα

[
γβ (1− α)

1 + β (1− α)

]1−α(
φztYt + z

φzt

)1−α

. (A.3)

Deriving zint and Y int again

We first verify that we can find the expressions for zint and Y int in (94) by imposing steady

state on the dynamical system in (A.2) and (A.3). Setting zt+1 = zt = zint, and Yt+1 = Yt =

Y int, we first note from (A.2) that

φzintY int + z

zint
=

1 + β(1− α)

β
. (A.4)

Then (A.3) shows that

Y int = Bα
[
γβ(1−α)
1+β(1−α)

]1−α (
φzintY int+z

φzint

)1−α
= Bα

[
γβ(1−α)
1+β(1−α)

]1−α [
1+β(1−α)

φβ

]1−α
= Bα

[
γ(1−α)

φ

]1−α
,

(A.5)
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where the second equality uses (A.4), and which is identical to the expression for Y int derived

in (94).

Next (A.4) and (A.5) show that

zint = βz
1+β(1−α)−βφY int

= βz

1+β(1−α)−βφBα[ γ(1−α)φ ]
1−α

= βz

1+β(1−α)−β(φB)α[γ(1−α)]1−α ,

(A.6)

which is the same as in (98).

Showing that zint ∈ (z, z) and zintY int ∈ (X,X)

First we derive expressions for B∗ and B∗∗ in terms of exogenous variables only, not involving

κ, D, X, or X. Recall from (87) that

B∗ =
X

z

[
1

κDφ1−α

] 1
α

. (A.7)

Using the expressions for κ an D in (77) we can write

1

κDφ1−α =

[
1− αβ

γβ(1− α)

]1−α
. (A.8)

Then recall from (25) that
X

z
=

1− αβ
βφ

. (A.9)

Now substituting (A.8) and (A.9) into (A.7) allows us write B∗ as

B∗ =
1

φ

(
1− αβ
β

) 1
α
[

1

γ(1− α)

] 1−α
α

. (A.10)

Next recall from (25) that

B∗∗ = B∗
[(

X

z

)(
z

X

)] 1
α

, (A.11)

and then use (60) to write
X

z
=

1

φ

[
1 + β(1− α)

β
− z

z

]
. (A.12)
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Now substituting (A.9) and (A.12) into (A.11) shows that

B∗∗ = B∗
(

β
1−αβ

) 1
α
[
1+β(1−α)−β(z/z)

β

] 1
α

= 1
φ

[
1

γ(1−α)

] 1−α
α
[
1+β(1−α)−β(z/z)

β

] 1
α

,

(A.13)

where the last equality uses (A.7).

We can now use the expression for zint in (98) to verify that setting zint = z and solving

for B gives the expression for B∗ in (A.10). Since zint is increasing in B this means that

zint > z for all B > B∗.

Analogously, we can set zint = z in (98) and solve for B, which gives the expression for

B∗∗ in (A.13). This verifies that zint < z for all B < B∗∗, since zint is increasing in B. That

is, B ∈ (B∗, B∗∗) implies zint ∈ (z, z).

It now also follows that zintY int ∈ (X,X) whenever B ∈ (B∗, B∗∗). To see this, note that

zintY int < X would imply that the constraint zt ≥ z is binding in steady state, contradicting

zint > z. Similarly, zintY int > X would imply that zt ≤ z binds in steady state, contradicting

zint < z.

Stability

To explore (local) stability we can first define

Wt = φztYt + z, (A.14)

R =
β

1 + β (1− α)
, (A.15)

and

Q = (φB)α [γ(1− α)]1−α , (A.16)

allowing us to write the dynamical system in (A.2) and (A.3) as

zt+1 = RWt,

Wt+1 = Qzα−1t (RWt)
2−α + z.

(A.17)

If the system in (A.17) is locally stable, then that in (A.2) and (A.3) must also be.

The quickest way to determine the stability properties of (A.17) is to draw a phase

diagram with zt on the vertical axis and Wt on the horizontal axis.

The locus along which zt is stationary (zt+1 = zt) is a straight line with slope R =

β/[1+β (1− α)], starting at the origin; zt+1 > (<)zt at coordinates below (above) the locus.
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The corresponding locus along which Wt is stationary is given by setting Wt+1 = Wt in

(A.17). This gives

zt = Q
1

1−α

[
(RWt)

2−α

Wt − z

] 1
1−α

≡ LW (Wt), (A.18)

where (A.17) verifies that Wt+1 < (>)Wt when zt > (<)LW (Wt).

We see right away that limWt→z LW (Wt) = ∞. Some algebra shows also that LW (Wt)

reaches a minimum at Wt = Wmin, given by

Wmin =

(
2− α
1− α

)
z,

implying that ∂LW (Wt)/∂Wt < (>)0 for Wt < (>)Wmin.

We can now illustrate the dynamics in a phase diagram with zt on the vertical axis and

Wt on the horizontal axis (left for the reader to draw). The (zt+1 = zt)-locus is a straight

line starting in the origin with slope R = β/[1 + β (1− α)] > 0. The (Wt+1 = Wt)-locus is

given by LW (Wt) in (A.18), and has negative slope for Wt ∈ (z,Wmin). Thus, the two loci

intersect along the downward-sloping segment of the (Wt+1 = Wt)-locus, and it follows that

the unique steady state must be given by that intersection.

[One can also show that there is no intersection along the upward-sloping segment, as

long as B < B∗∗, and even if the two loci did intersect there, that intersection could not give

the steady state equilibrium, since it would imply that zint is decreasing in B, contradicting

(A.6).]

The two loci separate the phase diagram into four regions surrounding the steady state.

Using the information derived above about how zt and Wt evolve over time off these loci,

it can be seen that an economy starting off in any of the four regions will converge to the

steady state. That is, any initial level of zt and Wt is associated with a (unique) trajectory

leading to the (unique) steady state, demonstrating stability.

Tax collectors: micro foundations for accumulation of extractive

capacity

This section proposes one way to motivate the functional form for accumulation of extractive

capacity, as given by (6) in the paper, i.e.,

zt+1 = min{z, z + φxt}. (A.19)

To that end, we introduce a new group of agents, called tax collectors. These are tasked by

the ruler with collecting τtYt in taxes from the subjects. After collecting the taxes the tax

collectors have the option to run off with the revenue to a region where it is harder for the
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ruler to reach. This can thus be thought of as a spatial model, where the ruler has full power

at the centre and imperfect controls over what happens in the periphery.

If the tax collectors run away, we assume that a fraction δ ∈ [0, 1] of the revenue is lost,

which captures the loss of grains and other in-kind revenue when transporting them.

The ruler has two ways to address the problem of tax collectors running away. First, he

can build capacity to retrieve stolen revenue. Let rt denote the fraction of the stolen revenue

that can be retrieved. We assume that this capacity depends on resources spent by the ruler

in the previous period, according to this functional form:

rt = min{r, φ̃xt−1}, (A.20)

where xt−1 denotes resources spent in the previous period, φ̃ > 0 is a parameter measuring

how easy it is to build capacity to retrieve lost taxes, and where r ≤ 1 is an exogenous

maximum level of rt.

The second way the ruler can address the problem of tax collectors running away is to

commit to a contract allowing tax collectors to keep some fraction of the revenue if they do

not run away. Let that fraction be 1− zt, meaning the ruler gets a fraction zt.

The payoff to the tax collectors if they choose to stay thus equals (1 − zt)τtYt. That is,

the tax collectors collect τtYt and keep a fraction 1− zt. The corresponding payoff if the tax

collectors run away with the revenue equals (1− rt)(1− δ)τtYt. That is, (1− δ)τtYt is left of

the stolen revenue after transporting it, and a fraction 1 − rt of that is left after the ruler

has retrieved the share rt. For tax collectors not to run away it must thus hold that

(1− rt)(1− δ)τtYt ≤ (1− zt)τtYt. (A.21)

The ruler sets the contract so that his share of the revenue, zt, is as high as possible, subject

to (A.21). This means that (A.21) holds with equality, which gives us the ruler’s share as

zt = 1− (1− rt)(1− δ)
= δ + (1− δ)rt
= δ + (1− δ) min{r, φ̃xt−1}
= min

{
δ + (1− δ)r, δ + (1− δ)φ̃xt−1

}
,

(A.22)

where the third equality uses (A.20). We can now define

z = δ + (1− δ)r,
z = δ,

φ = (1− δ)φ̃,

(A.23)

to rewrite the bottom row in (A.22) as

zt = min{z, z + φxt−1}. (A.24)
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Forwarding (A.24) one period we get the same expression as in (A.19).

Intuitively, extractive capacity is measured by the ruler’s negotiating position relative to

the tax collectors. A higher xt implies a higher rt+1, and thus a higher zt+1, because a ruler

who can retrieve more of any stolen resources is able to impose a contract more favorable to

himself.

Similarly, a higher r implies a higher z, since the maximum amount that can be retrieved

determines the maximum share the ruler can get in an incentive-compatible contract. The

ruler is guaranteed a share of z = δ, since any contract that gives the tax collectors a share

1− δ will induce them not to run away.

A low δ is associated with a high φ. Intuitively, the effects of a low δ is mitigated by

investments in rt.

φ also depends on φ̃, which may capture other factors which determine the return to

investing in extractive capacity, e.g., how circumscribed the environment is.

Defense

The benchmark model can be extended to allow for investment in external defense, aside

from other types of public goods. Suppose that some fraction of the output is subject to theft

by external forces, and that the ruler can protect himself against such theft by undertaking

costly investments. Let 1−Pt+1 denote the fraction of output that is stolen by outside forces

in period t + 1, where Pt+1 ∈ [0, 1]. (In other words, Pt+1 is the share of output that is

“protected.”) Output net of external theft is denoted by Ỹt+1, and given by

Ỹt+1 = Pt+1Yt+1 = Pt+1(BAt+1)
αL1−α

t+1 . (A.25)

The ruler can invest in Pt+1. This investment is undertaken in the preceding period at cost

ηPP
σP
t+1, (A.26)

where ηP > 0 and σP > 1 are exogenous parameters of the external defense cost function.

Analogously, we now denote the cost of investing in other public goods, At+1, by

ηAA
σA
t+1, (A.27)

where ηA > 0 and σA > 1 are here the exogenous parameters characterizing the cost function

for other public goods than defense.

The ruler’s utility maximization problem can now be written:

max
τt,xt,At+1

(1− β) ln
(
cRt
)

+ β ln(zt+1Ỹt+1), (A.28)

6



subject to

xt ≥ 0,

zt+1 = min{z, z + φxt},
cRt = τtztỸt − ηAAσAt+1 − ηPP

σP
t+1 − xt,

Ỹt+1 = Pt+1(BAt+1)
αL1−α

t+1 ,

Lt+1 = γ(1− τt)Ỹt.

(A.29)

(We could also add the constraint that Pt+1 ≤ 1, but we here assume that the exogenous

parameter values are such that this constraint never binds, which can be assured by setting

ηP sufficiently large.)

The task undertaken here is to show that the maximization problem in (A.28) and (A.29)

can be rewritten as that in (10) and (11) in the paper (which refers to the benchmark model),

but with η and σ being functions of “deep” parameters, such as ηA, σA, ηP , and σP .

Maximizing (A.28) subject to (A.29), the first-order conditions with respect to Pt+1 and

At+1 (in an interior solution) are given by

(1− β)
[
cRt
]−1

σPηPP
σP−1
t+1 = βP−1t+1,

(1− β)
[
cRt
]−1

σAηAA
σA−1
t+1 = αβA−1t+1.

(A.30)

Dividing these two first-order conditions with each other, and rearranging, we can write the

optimal spending by the ruler on defense as a constant times optimal spending on other

public goods:

ηPP
σP
t+1 =

1

α

(
σA
σP

)
ηAA

σA
t+1, (A.31)

which in turn allows us to write total spending on defense and public goods as

ηPP
σP
t+1 + ηAA

σA
t+1 =

[
σA + ασP
ασP

]
ηAA

σA
t+1. (A.32)

Next we can solve (A.31) for Pt+1 to write

Pt+1 =

[
1

α

(
σA
σP

)(
ηA
ηP

)] 1
σP

A
σA
σP
t+1. (A.33)

From (A.33) we note that

P
1
α
t+1At+1 =

[
1

α

(
σA
σP

)(
ηA
ηP

)] 1
ασP

Ãt+1, (A.34)

where we define

Ãt+1 = A
σA+ασP
ασP

t+1 . (A.35)
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We can now use (A.34) to write (A.25) as

Ỹt+1 = Pt+1(BAt+1)
αL1−α

t+1 =
(
BP

1
α
t+1At+1

)α
L1−α
t+1 =

(
B̃Ãt+1

)α
L1−α
t+1 , (A.36)

where

B̃ = B

[
1

α

(
σA
σP

)(
ηA
ηP

)] 1
ασP

. (A.37)

Similarly, using (A.32), and the definition of Ãt+1 in (A.35), we can write total spending on

public goods (including defense) as

ηPP
σP
t+1 + ηAA

σA
t+1 =

[
σA + ασP
ασP

]
ηA

(
Ãt+1

) ασP σA
σA+ασP . (A.38)

Next we can define
η =

[
σA+ασP
ασP

]
ηA,

σ = ασP σA
σA+ασP

,
(A.39)

to write (A.38) as

ηPP
σP
t+1 + ηAA

σA
t+1 = ηÃσt+1. (A.40)

This allows use to rewrite (A.29) as

zt+1 = min{z, z + φxt},
xt ≥ 0,

cRt = τtztỸt − ηÃσt+1 − xt,
Ỹt+1 =

(
B̃Ãt+1

)α
L1−α
t+1 ,

Lt+1 = γ(1− τt)Ỹt,

(A.41)

where the only changes are to the third and fourth rows, here rewritten by using (A.36) and

(A.40).

Maximizing (A.28) subject to (A.41) amounts to the exact same maximization problem

as in the benchmark model; see (10) and (11). The only difference is that At, B, Yt, and

Yt+1 are replaced by the corresponding “tilde” variables: Ãt+1, B̃, Ỹt, and Ỹt+1, respectively.

Note that a territory that is easier to protect, which can be interpreted as ηP being low,

is associated with a high B̃, while η and σ do not depend on ηP ; see (A.37) and (A.39).

Intuitively, when defense is less expensive, fewer resources are needed for investment in

defense. These can be invested in productive capacity instead, which translates to more

output holding total expenditures constant.
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Incomes of ruler and subjects in the low-extractive steady state

In the low-extractive steady state, after-tax income per subject equals

(1− τ)
Y

L
=

1

γ
, (A.42)

which can be derived by imposing steady state on (5). That is, per-subject income after

tax only depends on the reproduction parameter, γ, as in any Malthusian steady state. In

particular, it is independent of z.

Next we derive an expression for the ruler’s income in the same low-extractive steady

state. First note that the number of subjects is technically infinite (i.e., a continuum of

agents of mass L). To make our income comparisons mathematically consistent, below we

interpret the ruler as a collective of constant mass one, although we still refer to him in the

singular.

Recall that the ruler’s income in the low-extrative steady state equals zτY (divided by a

mass of 1). From (17) we see that

Y = [κDBαzα−1 (φz)ρ]
1

1−ρ ,

= [κDBαφρ]
1

1−ρ z
α−1+ρ
1−ρ

= [κDBαφρ]
1

1−ρ z
α−(1−ρ)

1−ρ

= [κDBαφρ]
1

1−ρ z
α

1−ρ−1.

(A.43)

On closer inspection of the last equality in (A.43), recalling from (46) that ρ = 1−α+α/σ,

the first term in the exponent on z can be written

α

1− ρ
=

α

1− [1− α + α/σ]
=

σ

σ − 1
> 0, (A.44)

where the inequality follows from σ > 1. Now (A.43) and (A.44) show that the ruler’s income

can be written

zτY = τ [κDBαφρ]
1

1−ρ z
σ
σ−1 . (A.45)

Recall that τ is given by (14), and that κ and D are given by (47) and (54). These all depend

on exogenous parameters, but not on z. It follows that zτY is strictly decreasing in z, and

that

lim
z→0

zτY = 0.

That is, the ruler’s income in the low-extractive steady-state, zτY , can be made arbitrarily

small by setting z arbitrarily close to zero. Specifically, it can be made smaller than (or

equal to) after-tax income per subject, which is given by (A.42) and indendent of z.
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