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1 Introduction

Autocratic regimes are not directly accountable to any electorate and therefore
there is no simple mechanism through which incompetent or corrupt autocrats
are weeded out. However, such regimes are not invulnerable. According to
Tullock (1987) there are three ways in which an autocrat can be ousted: by
someone within the own government or administration; by an external power;
or by a public uprising. The last one of these, Tullock argued, is exceedingly
rare (perhaps because he was writing in 1987).

Here we analyze a dynamic model of power competition in a nondemocracy.
In a Tullockian spirit, we assume that the regime faces either an external or
an internal threat. We link this threat structure to recent work by Egorov
and Sonin (2011) on the loyalty-competence trade-off faced by dictators: in a
situation where the threat to the ruler is internal his survival chances depend
on how loyal his administration is; when the threat is external, the ruler is
dependent on his administration’s competence. A real-world example could be
when the Soviet Union was invaded in 1941. In that moment almost everyone
rallied around Stalin, including many of his enemies, and the regime’s survival
hinged on the competence of its military leadership. In times of peace, however,
Stalin instead worried about competition from within the party elite, and
therefore promoted incompetent but loyal administrators to important posts.

In our model, rulers belong to different dynasties. In each period the
incumbent ruler, if he survives a challenge to his own power, hands power
over to what we call an “offspring.” This could be the ruler’s own son, or a
younger follower of the same political movement (or even the ruler himself in a
liberal interpretation, as discussed later). The ruler cares about his offspring’s
chances of surviving in the next period, which he can influence by adjusting
the composition of the administration. When making those changes, he faces
an Egerov-Sonin type of trade-off between loyalty and competence. Moreover,
big and rapid changes in the administration are here costlier than gradual
changes: the more administrators are replaced, the less competence can be
afforded at a given level of loyalty.

The crucial assumption driving the dynamics is that loyalty is dynasty-
specific, but competence is not. When a new dynasty seizes power, it inherits
the competence of the existing administration, but starts off with fewer loyal-
ists.

How big changes a new ruler chooses to make depends on the inherited
administration’s composition. He may choose to purge the previous admin-
istration completely, filling the positions with incompetent loyalists. This is
optimal if the previous administration’s competence level is low, making a
purge less costly is terms of destroyed “competence capital.” If the inherited



competence level is higher, the new ruler instead chooses to maintain that
competence and even build it further.

This gives rise to some interesting path dependence. A society can stay for
a long time on a path where subsequent dynasties purge the administrators
hired by the previous dynasties, making competence levels bounce around a
low level. At some point, some dynasty manages by chance to stay in power
long enough to accumulate sufficiently many competent administrators, so
that, when the dynasty is eventually ousted, the new dynasty does not find it
optimal to purge the inherited administration.

The result is a transition away from repeated purges to a more stable path
and a simultaneous rise in the levels of administrative competence. This may
capture something important for understanding development, if we interpret
a larger fraction competent administrators as representing broad institutional
quality, like the organizational structures of police, courts, civil service, etc.
Having better such institutions makes it less worthwhile for a new dynasty to
destroy them.

This paper seeks to contribute to a vast literature on the link between
political institutions and economic development. There is a great deal of work
in economic history and political science on how and why democracies tend to
be more conducive to economic development, although many of these do not
apply formal models (see e.g. Lipset 1959, Moore 1966, North and Weingast
1989, Olson 1993).

Empirically, however, the causal link between democracy and development
is not as clear as one might think. There is little evidence of cross-country
correlation between per-capita income levels and democracy, when controlling
for country fixed effects (Acemoglu and Robinson 2006, Ch. 3; Acemoglu,
Johnson, Robinson and Yared 2008). This might motivate the search for the-
ories of how development depends on other political or institutional factors
than democracy, such as administrative competence and political stability.

A large body of research in political economy, going back at least to Downs
(1957), has analyzed how democracies function (see e.g. Osborne and Slivinski
1996, Besley and Coate 1997, Persson and Tabellini 2000). A different strand
of that literature examines nondemocracies (see e.g. Tullock 1987; Grossman
2000; Grossman and Noh 1994; Acemoglu, Egorov and Sonin 2008, 2009, 2010;
Acemoglu, Ticchi and Vindigni 2010).

There are also models of transitions from dictatorship to democracy in the
form extensions of the franchise; see e.g. Acemoglu and Robinson (2000, 2001,
2006). Gradstein (2007, 2008) and Cervellati et al. (2008) set up multiple-
equilibria models that can endogenously generate different institutional out-
comes (democracy or dictatorship), each associated with different economic



outcomes.
Acemoglu, Ticchi and Vindigni (2011) explain how an inefficient state or-

ganization can persist in an (emerging) democracy, where a rich elite maintain
power by, prior to democratization, employing inefficient bureaucrats, who
earn rents and become pivotal in the voting process.

Acemoglu, Egorov and Sonin (2010) study a dynamic environment where
some fraction of the members of an incumbent government can block changes
to its composition. Such incumbency veto power enables incompetent gov-
ernments to survive, and leads to less flexibility in the presence of exogenous
shocks. In a similar spirit, we explain how administrative incompetence can
be sustained over time, but our mechanism is linked to purges of competent
administrators, rather than any veto powers of incumbent administrators.

A similar loyalty-competence trade-off is examined in great detail by Egorov
and Sonin (2011). Whereas our model has a collective administration they
have one single administrator (or vizier), who chooses whether to be loyal,
or not. In our model, loyalty is not a choice, but rather depends on how far
away, e.g. ideologically or ethnically, the ruler recruits administrators in the
search for competent candidates. Although less detailed in many dimensions,
our framework can be used to analyze the dynamic paths of competence and
loyalty, in particular transitions from a state of continual purges to one with
no purges. We also let the fraction of the administrators who are replaced
in any given period be endogenous, which enables the model to capture the
degree of gradualism in such adjustments, i.e., a measure of stability.

Besley and Persson (2008) study the incentives for rulers to invest in fiscal
and legal state capacity, i.e. the state’s ability to collect taxes and enforce
contracts (see also Besley and Persson 2009, 2010). One result in their model,
also supported by the data, is that external threats promote investments in
state capacity, whereas civil war tends to do the opposite. This resembles the
link in our model between external and internal threats and the relative value
of competence and loyalty.

Other related papers include Mueller (2009), who studies politicians’ choices
of appointment procedures for bureaucrats. Mulligan and Tsui (2008) examine
a dynamic model where an incumbent ruler can use taxation (or rents) and
entry barriers to influence his competitors’ incentives and abilities to challenge
him. They do not allow for within-regime dynamics, or transitions.

Finally, our model has a connection to theories on endogenous transitions
from stagnation to sustained growth in per-capita incomes (see e.g. Galor
and Weil 2000, Hansen and Prescott 2002, Lagerlöf 2003). Although we do
not even have any explicit variable measuring income, our model can generate
transitions in the form of a rise in administrative competence and political sta-



bility, and we cite evidence that such factors are correlated with (and, possibly,
impact) economic growth.

The rest of this paper is organized as follows. Next Section 2 motivates
why the mechanisms that we model could be relevant when thinking broadly
about the links between institutions and development. Section 3 sets up the
model, first deriving the competence-loyalty trade-off in a static environment
(Section 3.1) and then examining a dynamic framework (Section 3.2). Section
4 ends with a concluding discussion.

2 Background

2.1 Examples of purges

There are many examples from nondemocracies of new rulers eliminating ad-
ministrators or politicians from the previous regime. Consider first two exam-
ples from Iraq. In 1979, after forcing his predecessor Ahmad Hassan al-Bakr
out of power, Saddam Hussein imprisoned and killed several of the ruling
Baath party’s top brass, some of whom were publicly escorted out from a
special party congress (Marr 2004, pp. 178-181).

Then in 2003 after Saddam Hussein’s regime had been ousted by a U.S. led
invasion, the new provisional government under Paul J. Bremer’s leadership
decided to disband the whole army and fire all Baathist high-ranking civil
servants (Packer 2005, pp. 189-196).

Another example comes from the Soviet Union. Although leader of the
Communist Party since 1924, it was not until after the 17th party congress
in 1934 that Stalin became the unopposed dictator after surviving a failed
attempt from some delegates to oust him. Following that he put in motion
the famous Terror of 1937-38, during which the vast majority of the congress
delegates were arrested or killed, as well as 5 of the 15 members of the Politburo
and 98 of the 139 members of the Central Committee (Montefiore 2003, p.
237).

Yet another example comes from South Korea, where President Park after
seizing power in 1961 embarked on a “purification” campaign, blacklisting a
whole generation of politicians who had served under the previous regime (Oh
1968, pp. 138-140).

2.2 Stability, competence and development

In our model, two changes occur when the economy transits to a path with
no purges: administrative competence increases, and the economy becomes



more stable. (This holds whether stability is measured by the fraction of
the administrators being replaced, or the frequency with which dynasties are
ousted.)

Even though our model does not say anything explicitly about incomes,
we think such transitions capture something about takeoffs from stagnation to
sustained economic growth. Arguably, improved administrative competence
should be growth enhancing. In planned economies administrators could be
making detailed decisions on production quotas and need to organize great
amounts of information.1 Such tasks may require high skill levels to be per-
formed well.

As argued already, we may also interpret competence more broadly, cap-
turing e.g. absence of corruption. There is a large literature documenting
a negative correlation between various measures of corruption and economic
growth (see e.g. Mauro 1995, Svensson 2005).

Similarly, various measures of political stability show high correlation with
economic growth in the cross-country data (see e.g. Mauro 1995, Alesina et al.
1996, Alesina and Perotti 1996). This is particularly true for nondemocracies
(Przeworski et al. 2000, pp. 211-213).

Our model predicts that, once a purge is over, competence grows as long as
the dynasty is not ousted. Moreover, when a dynasty is ousted, the effect is less
likely to be a competence destroying purge if the dynasty has been in power
longer, and thus accumulated more competence. This seems consistent with
Clague, Keefer, Knack and Olson (1996), who document that good governance
in some broad sense increases with an autocratic groups’s tenure: more long-
lived autocratic regimes are associated with e.g. smaller black market exchange
premiums and better credit ratings than short-lived ones. Also consistent with
our model, Clague et al. (1996) find that the probability of a regime being
ousted in a coup is highest in the earlier years’s of its tenure.

3 The model

3.1 The competence-loyalty trade-off

In this section, we set up a static model of a ruler’s trade-off between loy-
alty and competence among administrators. These traits are not mutually
exclusive, so administrators can be competent or loyal, neither, or both.

The idea we seek to capture is that an administrator is more likely to be
loyal if he is close to the ruler in some sense, e.g. ethnically, ideologically, or

1See e.g. Weitzman (1970) for a model of the interaction between a planning ministry
and several industries.



through family ties, whereas competence does not depend on such closeness.
To model this we let the positions of the ruler, as well as the pool of potential
administrators, be represented by points on a circle with circumference B, on
which the pool of potential administrators are uniformly distributed. (This
interval need not be a circle, but that assumption may make it easier to see
why the ruler’s own position does not matter for the results below.)

The ruler has a mass of r ∈ [0, 1] positions to fill. This will later be inter-
preted as the fraction of the initial unit-sized administration that he chooses
to replace, but in this section we treat r as exogenous.

The ruler selects his candidates by first letting a mass d ∈ [r, B] of the
potential candidates do a test that informs him about their competence, and
then hires r ≤ d of those d candidates.

Let the ruler’s position on the circle be normalized to 0 and let x ∈
[−B/2, B/2] be the position of some candidate, as illustrated in Figure 1.
The distance between the ruler and the candidate is thus |x| ∈ [0, B/2].

Let the stochastic variable c̃(x) denote whether the candidate at location x
is competent [c̃(x) = 1], or not [c̃(x) = 0]. Similarly, let the stochastic variable

l̃(x) denote whether the candidate at location x is loyal [l̃(x) = 1], or not

[l̃(x) = 0].
The first crucial assumption we make is that, at any location x, the stochas-

tic variables c̃(x) and l̃(x) are independent. More precisely, the probability that
a candidate is competent does not depend on the distance from the ruler:

Pr [c̃(x) = 1] = ρ ∈ (0, 1) (1)

for all x ∈ [−B/2, B/2]. We assume that ρB ≥ 1, so that the total mass of
competent candidates in the pool does not fall below the maximum mass of
positions needed to be filled; recall that r ∈ [0, 1].

Different from competence, loyalty is a trait that cannot be tested for, but
it can be inferred from the candidate’s distance from the ruler. More precisely,
the probability that a candidate is loyal is given by:

Pr
[
l̃(x) = 1

]
= f(x) = 1−

(
2κ

B

)
|x|, (2)

where κ ∈ [0, 1] is an exogenous parameter that determines the fraction loyal
candidates at the maximum distance from the ruler, i.e., at distance x = B/2
or x = −B/2. That is, f(B/2) = f(−B/2) = 1 − κ. If κ < (=)1, then a
strictly positive (zero) fraction of the most distant candidates are loyal. All
candidates at zero distance are loyal, since f(0) = 1.

Consider a ruler who tests candidates over an interval of length d ∈ [r, B]
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Figure 1: Illustration of the competence-loyalty trade-off. The ruler sets
the recruiting interval, d, taking the mass of positions to be filled, r, as
given.

centered on his own position, 0, and hires only those he finds competent. The
recruitment interval thus equals [−d/2, d/2]; see Figure 1. The total mass of
candidates tested as competent is ρd. The fraction of the r hired administrators
who are competent, denoted q, becomes

q =

{
ρd
r

if d ∈ [r, r
ρ
],

1 if d > r
ρ
.

(3)

The lowest value q can take is ρ, which happens if d = r, i.e., if the ruler
tests only as many candidates as he has positions to fill. Only by testing
more candidates (d > r) can he ensure above-average competence among the
recruits (q > ρ). If d > r/ρ, then there are more competent candidates among
the d tested than positions to fill, implying q = 1. However, as will be seen
soon, the ruler will not hire over a larger interval than needed, because that



would be costly in terms of loyalty.
Let dmin be the minimum distance over which the ruler must test and

recruit r candidates, ensuring that a fraction q ∈ [ρ, 1] of them are competent.
From (3) we get:

dmin =
rq

ρ
. (4)

Next let p denote the average fraction candidates over any interval [−d/2, d/2]
who are loyal. Since the distance to the ruler decreases symmetrically on both
sides of the ruler’s position, p is given by the average fraction loyal on [0, d/2].
Using (2) gives

p =
1

(d/2)

∫ d/2

0

f(x)dx =
1

(d/2)

∫ d/2

0

[
1−

(
2κ

B

)
x

]
dx. (5)

Solving the integral in (5) gives p as a decreasing function of d:

p = 1−
( κ

2B

)
d. (6)

Since competence is independent of the candidates’ positions, the mass of
ρd competent candidates is also distributed uniformly on [−d/2, d/2]. There-
fore the average fraction loyal among the ρd competent is also given by p. We
can now derive the maximum fraction loyal candidates the ruler can recruit at
any given fraction competent, q, by applying (6) and (4), and setting d = dmin.
This gives:

p = 1− φqr, (7)

where
φ =

κ

2Bρ
. (8)

This describes the trade-off between competence (q) and loyalty (p), at any
given r. Recall that the minimum level of q in (7) is ρ, so the maximum level
of p the ruler can choose is 1− φρr.2

For simplicity, in the rest of this paper we let ρ be very close to zero and B
very large, holding the product ρB constant (and, recall, greater than one; see
below). In other words, we let competent candidates be extremely rare, but
the pool to choose from very large. This means that (as a good approximation)
we can let the ruler choose q on [0, 1], and thus be able to ensure full loyalty
(p = 1) by setting q = 0. In terms of Figure 1, loyalty falls very slowly
when expanding the recruiting interval [because B is large; see (6)], but the

2More precisely, if d = r, then p = 1−φρr, which follows from either setting d = r in (6)
and using the notation in (8); or from setting d = r in (3), to get q = ρ, and then using (7).



ruler must recruit over a very large distance to find the very few competent
candidates (because ρ is small).

By assuming that Bρ ≥ 1, it follows that, if r = 1, then the ruler can fill
the positions with only competent candidates (q = 1) if he so chooses; see (3)
and note that d ≤ B.3 Since κ ∈ [0, 1], it then also follows that 0 ≤ κ ≤ Bρ,
which in turn implies from (8) that

0 ≤ φ ≤ 1

2
. (9)

The trade-off in (7) has the interesting property that the higher is the frac-
tion competent among new hires, q, the costlier is an increase in r in terms of
reduced loyalty, p. In that sense, improving competence is best done gradually,
by replacing small segments of the administration, whereas improving loyalty
can be done in one sweep.

Having modeled this trade-off, we next examine the ruler’s choices in a
dynamic setting.

3.2 A dynamic setting

Consider next a discrete-time non-overlapping generations setting, where dif-
ferent dynasties of rulers compete for power. In each period, some ruler starts
off in power, is challenged, reshuffles the administration, and then passes power
on to a (biological or ideological) offspring in the next period. The reshuffling
is done with the aim to maximize the probability that the offspring survives in
the next period, and is made subject the competence-loyalty trade-off in (7).

More precisely, the timing of events in each period is as follows:

1. A ruler enters office, taking as given the composition of a unit-sized
administration. A fraction c ∈ [0, 1] of the administrators are competent,
and a fraction l ∈ [0, 1] loyal. (As discussed already, and further below,
these categories are not mutually exclusive.)

2. The state of the world is realized, determining if the threat to the ruler
is external or internal. If the threat is external the ruler is ousted with
a probability that depends on the fraction competent, c; if the threat
is internal the ruler is ousted with a probability that depends on the
fraction loyal, l.

3Relaxing this assumption, there would be some upper limit on the fraction competent
recruits the ruler could hire, q, and that upper limit would depend on how many are replaced,
r.



3. If the incumbent ruler is not ousted he can fire some, or all, adminis-
trators and hire new ones, endogenous fractions of whom are loyal and
competent. He then hands power over to his offspring, who enters stage
1 in the next period. If the incumbent ruler is ousted, the new ruler
first inherits the previous ruler’s administration, with the same fraction
competent administrators (same c), but with fewer loyalists (lower l).
The new ruler then decides how many of the administrators to fire, hires
new ones, and hands over to his offspring who enters stage 1 in the next
period.

Most of the analysis in this section will refer to the ruler’s choices at stage
3 about how to update c and l, taking the initial levels of these state variables
as given. This could refer to either an incumbent ruler who has survived a
threat of being ousted, or a new ruler who has just ousted his predecessor. In
Section 3.2.5 we analyze the effects of a change in leadership, associated with
a drop in l prior to that update.

Assuming that the ruler seeks to maximizing his offspring’s chances of
survival in the next period seems like a useful starting point, although one
can consider different setups. In particular, the ruler here does not care about
the survival of the dynasty in the period after next, i.e., his (biological or
ideological) “grandchildren.”

Note also that the individual administrators do not live in generations
like the rulers; those who are not fired stay on as administrators in the next
period. One interpretation is that the administrators are infinitely lived (when
not replaced). Another is that the administrative positions are inherited by
default, and that the traits (competence and loyalty) are also passed on among
administrators from father to son.4 Yet another interpretation abstracts from
generations altogether, letting the ruler himself stay in power (if not ousted),
rather than handing power to an offspring, but that assumes that the ruler is
myopic and cares about his own survival chances only in the very next period
(perhaps not unreasonable in this context).

3.2.1 The ruler’s survival function

Let the incumbent ruler’s survival probability at stage 2 be S. In the next
period, his offspring’s probability of surviving is S ′. Let z denote the probabil-
ity that the threat is external; with residual probability the threat is internal.
In each respective state, we let the survival chances be linear in the fraction
competent and loyal, respectively, so that the survival probability of the ruler

4This may be a good description of many preindustrial societies.



becomes:
S = zc + (1− z)l. (10)

Some remarks are in order. First note that (10) assumes that only cmatters
when the threat is external, and only l when the threat is internal. We could
allow c and l to matter in both states of the world. As long as the survival
probability in each state is linear in c and l, we can still write the overall
survival probability as in (10), but with z being a function of the underlying
probability of an external threat.5

As noted already, competence and loyalty are not mutually exclusive: an
administrator can be, e.g., both loyal and competent, or both disloyal and in-
competent. Moreover, the formulation in (10) implies that if all administrators
are loyal and competent (c = l = 1), then the ruler is fully safe (S = 1). This
assumption is made only to economize on notation; Section 3.2.7 considers an
alternative formulation, where the maximum survival probability falls strictly
below one.

The model is silent about the precise way in which competence matters in
the face of an external threat. Arguably, the competence level of the military
should play a role for success in war. Diplomatic skills and the ability to
negotiate could also matter, e.g. by enabling a ruler to avoid a war he would
likely lose.

We could also allow for a non-Tullockian interpretation, by letting the state
where competence matters correspond to one where the threat comes from a
public uprising (rather than from an external power). The implicit assumption
could then be that a more competent (less corrupt) administration would make
the public less inclined to rebel.6 However, for the rest of the presentation we
shall stick to the interpretation of an external threat.

3.2.2 The ruler’s optimal choices

Consider now a ruler at stage 3 (either an incumbent who was not ousted or
a new ruler who has ousted a predecessor) seeking to maximize his offspring’s
survival chances in the next period, S ′. Taking as given c and l, the ruler
replaces a fraction r ∈ [0, 1] of the (unit-mass) administration before handing

5For example, let z̃ be the probability that the threat is external and let

S = z̃[σc+ (1− σ)l] + (1− z̃)[ηc+ (1 − η)l],

where z̃, σ and η all lie on [0, 1]. This boils down to the formulation in (10) with z =
z̃σ+ (1− z̃)η. If σ > η, so that competence matters more when the threat is external, then
z is increasing in z̃.

6I am grateful to Fahad Khalil for this suggestion.



power over to his offspring.
We restrict the ruler’s powers by assuming that r is a random sample of the

administration. The ruler thus cannot make replacements contingent on the
administrators’ characteristics, and is unable to replace primarily the disloyal
and incompetent. This simplifies the analysis a great deal. Ideally, the model
should allow the ruler to choose who to replace, but depending on context and
interpretation, imposing that he cannot need not be completely unrealistic.
It could capture limitations on the information and management abilities of
the ruler, especially when replacing large segments of the administration.7 See
also Section 4 for some further discussion of this assumption.

Let c′ and l′ be the fractions competent and loyal when the offspring enters
stage 1 in the next period, and recall from Section 3.1 that we let q and p
be the fractions of the r new hires who are competent and loyal, respectively.
Since r is a random sample of the initial administration, it follows that:

c′ = c(1− r) + rq, (11)

and
l′ = l(1− r) + rp = l(1− r) + r − φqr2, (12)

where we have used the loyalty-competence trade-off among new hires in (7).
Since the offspring’s survival probability in the next period is S ′ = zc′ +

(1− z)l′, using (11), (12) and some algebra, we get

S ′ = q[z − (1− z)φr]r + zc(1 − r) + (1− z)[l(1− r) + r] ≡ S(r, q; c, l). (13)

The problem thus boils down to maximizing (13) with respect to r and q.
Since (13) is linear in q, the ruler sets q = 0 (q = 1) if Sq(r, q; c, l) < (≥)0,
which in turn depends on the sign of the coefficient in front of q in (13), i.e.,
z − (1− z)φr. It follows that

q =

{
0 if r > r̂,
1 if r ≤ r̂,

(14)

where
r̂ =

z

φ(1− z)
. (15)

In other words, if the ruler chooses to make big changes in the administration

7For example, under Stalin’s terror precise quotas were given by the Politburo that
specified how many were to be arrested and executed in each region of the Soviet Union.
Exactly who fell victim was then decided by local authorities, often based on long-forgotten
personal conflicts or sheer coincidence (Montefiore 2003, Ch. 20).



(r > r̂), then he also chooses to hire only incompetent candidates (q = 0).
We assume that z < φ/(1 + φ), implying that r̂ < 1. This allows for

the possibility that the ruler finds it optimal to set r > r̂ and thus hire only
incompetent candidates.

The optimal choice of r can now be derived by maximizing (13) over r after

substituting q for (14). Define Ŝ(r; c, l) as follows:

Ŝ(r; c, l) =

{
zc + (1− z)l + r[(1− z)(1− l)− zc] if r > r̂,
zc + (1− z)l + r[z(1− c) + (1− z)(1 − l)]− (1− z)φr2 if r ≤ r̂.

(16)

That is, Ŝ(r; c, l) = S(r, 0; c, l) for r > r̂; and Ŝ(r; c, l) = S(r, 1; c, l) for r ≤ r̂.

Figure 2 shows an example of how Ŝ(r; c, l) may be shaped. Generally, it

holds that Ŝ(0; c, l) = zc + (1 − z)l; with no changes in the administration
the initial levels of c and l determine the offspring’s survival probabilities in
the next period. Also, Ŝ(1; c, l) = 1− z; if replacing the whole administration
with incompetent loyalists (r = 1 and q = 0) the ruler’s offspring survives
if, and only if, the threat in the next period is internal, which happens with
probability 1− z.

Where Ŝ(r; c, l) peaks depends on c and l. The details are shown in Section
A of the appendix, but the idea is quite intuitive. First define these two
threshold levels of c (both of which depend on l):

c =

(
1− z

z

)
(1− l), (17)

and

c =

(
1− z

z

)
(1− l)− 1 = c− 1. (18)

There are three cases to consider: (A) c > c, (B) c < c, and (C) c ∈ [c, c].
Figure 2 applies to Case (C) but the other cases can be understood intuitively
from the same figure.

In Case (A), Ŝ(r; c, l) has negative slope for r > r̂. The ruler’s optimal r
is here given by an interior maximum on [0, r̂], denoted rmax in Figure 2, and
given by

rmax =
z(1− c) + (1− z)(1 − l)

2φ(1− z)
. (19)

In this case, it holds that rmax < r̂, so the ruler’s optimal q equals 1; see (14).

In Case (B), Ŝ(r; c, l) has positive slope both for r > r̂ and r ≤ r̂. We
thus have a corner solution, where the ruler sets r = 1 and q = 0, which is
what we call a purge.



S(r, 0; c, l)S(r, 1; c, l)

r

Ŝ(r; c, l)

10 r̂rmax

q = 1 q = 0

zc + (1− z)l

1− z

Figure 2: Illustration of the ruler’s optimal choices of r and q. In this
case the ruler is indifferent between setting either r = 1 and q = 0 or
r = r

max
and q = 1.

In Case (C), which could be the one illustrated in Figure 2, there are two
local maximum points: r = 1 and r = rmax. To determine which one of these is
the global maximum we compare the value of the objective function, Ŝ(r; c, l),
at these two points. The analysis becomes quite cumbersome and is suppressed
to the appendix, but the solution is relatively easy to state. Section A.3 of the
appendix shows that the ruler chooses r = rmax (r = 1) if c > (<)Ψ(l), where

Ψ(l) =

(
1− z

z

)
(1− l)− Ω, (20)

and

Ω =
2

r̂

[
1−

√
1− r̂

]
− 1 ∈ [0, 1], (21)

where r̂ = z/[φ(1 − z)] is given by (15).



That Ω ∈ [0, 1] is shown in Section B of the appendix. This can also be
shown to imply that c ≤ Ψ(l) ≤ c; see (17), (18) and (20). Thus, Cases (A)
and (B) become special cases of c > Ψ(l) and c < Ψ(l), respectively. (See also
Section A.4 of the appendix.)

Figure 2 illustrates the knife-edge case where c = Ψ(l), so that the ruler is
indifferent between r = rmax and r = 1; in this case we assume that he chooses
r = rmax.

To sum up, the ruler’s optimal choice of r is given by

r =

{
rmax =

z(1−c)+(1−z)(1−l)
2φ(1−z)

if c ≥ Ψ(l),

1 if c < Ψ(l),
(22)

and the fraction competent among the new hires, q, is given by

q =

{
1 if c ≥ Ψ(l),
0 if c < Ψ(l).

(23)

Using (7), (22) and (23) we can also derive an expression for the fraction
loyal among new hires:

p = 1− φqr =

{
1− z(1−c)+(1−z)(1−l)

2(1−z)
= (1−z)(1+l)−z(1−c)

2(1−z)
if c ≥ Ψ(l),

1 if c < Ψ(l).
(24)

The expressions for r and q in (22) and (23) can be understood intuitively
by thinking of competence as a form of accumulated capital. When the fraction
competent is low, c < Ψ(l), the ruler loses little if he replaces all administrators
with incompetent loyalists. The incentives to keep some administrators are
stronger when there is something to lose. Similarly, if the administration is
already relatively loyal – implying that l is large and thus Ψ(l) small – then
the incentives to improve loyalty further, thus losing the existing competence,
are weak.

We have now derived the incumbent ruler’s behavior, as a function of the
initial levels of c and l in his administration. Next we shall examine the
dynamics of these state variables.

3.2.3 The dynamical system

To a ruler taking c and l as given, the fraction competent in the next period,
c′, can be derived from (11), (22) and (23). If c < Ψ(l), the ruler purges the
administration and the fraction competent in the next period drops to zero,
c′ = 0. If c ≥ Ψ(l), we see from (11) that the fraction competent in the next



period is given by c′ = c(1− rmax) + rmax = c+ (1− c)rmax where (recall) rmax

is a function of c and l given by (19). This gives

c′ = F (c, l) ≡
{

c + (1− c)
[
z(1−c)+(1−z)(1−l)

2φ(1−z)

]
if c ≥ Ψ(l),

0 if c < Ψ(l).
(25)

Similarly, the fraction loyalists in the next period can be derived from (12),
(22) and (23). When c < Ψ(l), the ruler replaces the whole administration
with incompetent loyalists so l′ = 1. When c ≥ Ψ(l), and thus r = rmax and
q = 1, then l′ = l(1− rmax) + rmax − φ(rmax)

2, where rmax is given by (19); the
algebra for this case is sorted out in Section C of the appendix. The result is:

l′ = G(c, l) ≡
{

l + 1
4φ

[
(1− l)2 −

(
z

1−z

)2
(1− c)2

]
if c ≥ Ψ(l),

1 if c < Ψ(l).
(26)

Next recall that the ruler may be ousted at stage 2, in which case the new
ruler inherits the fraction competent in the previous administration, c, but
faces a lower fraction loyalists. Now let l0 denote the fraction administrators
loyal to the new ruler’s dynasty, whereas l is the fraction who were loyal to
the previous dynasty. We here treat l0 as exogenous, which simplifies the
analysis a great deal. An alternative approach would be to try to endogenize
l0 by examining how the current administrators are positioned on the circle of
circumference B relative to the new ruler.8

Recall that the incumbent ruler survives with probability S = zc+(1−z)l.
Thus, the stochastic difference equation for c can be written

c′ =

{
F (c, l) with probability S = zc + (1− z)l,
F (c, l0) with probability 1− S = 1− zc− (1− z)l,

(27)

where F (c, l) is given by (25). Similarly, the stochastic difference equation for
l can be written

l′ =

{
G(c, l) with probability S = zc+ (1− z)l,
G(c, l0) with probability 1− S = 1− zc− (1− z)l,

(28)

where G(c, l) is given by (26).
Together with initial conditions for c and l, (27) and (28) characterize the

stochastic time paths of c and l. Since this system is stochastic the exact paths

8This approach would require a theory of what the new ruler’s position on the circle is,
as well as that of the current administrators (who, recall, have been hired at potentially
different points in time).



depend on what shocks are realized in each period. This is easiest to illustrate
numerically, as shown in Section 3.2.6 below.

3.2.4 Phase diagram

Before studying the full stochastic dynamical system, consider a dynasty that
is never ousted (although every generation still behaves so as to minimize that
risk), so that the dynamics are deterministic and described by the (25) and
(26).9

The dynamics for c then become trivial to analyze: if c ≥ Ψ(l), then c is
growing over time (or constant if c = 1); if c < Ψ(l), then c drops to (or stays
at) zero in the next period. From (25), the locus along which c is constant can
be written

Lc =
{
(c, l) ∈ [0, 1]2 : (c < Ψ(l), c = 0) or (c ≥ Ψ(l), c = 1)

}
. (29)

The dynamics for l are almost as easy to see: if c < Ψ(l), then l jumps
to one in the next period; if c ≥ Ψ(l), then l can be increasing, decreasing or
constant. From (26) we can define the locus along which l is constant as

Ll =
{
(c, l) ∈ [0, 1]2 : c ≥ Ψ(l), c = Γ(l)

}
(30)

where

Γ(l) = 1−
(
1− z

z

)
(1− l). (31)

Deriving Γ(l) amounts to setting l′ = l in (26), considering the case when
c ≥ Ψ(l); note from (20) that Ψ(1) = −Ω < 0, so l′ = l cannot hold for
c < Ψ(l).10

The joint dynamics for c and l are illustrated in the phase diagram in Figure
3. The thick solid lines are the loci along which c′ = c and l′ = l, defined by
(29) and (30). The steady state (point SS) is given by their intersection,
Lc ∩ Ll = (1, 1). That is, all administrators are both competent and loyal in
steady state. It is straightforward to see that this steady state is unique.11

9Equivalently, this amounts to imposing S = 1 in (27) and (28).
10One can also derive c = Γ(l) by setting the fraction loyal among new hires, p, equal

to that among the existing administration, l. Using (24), and considering the case when
c ≥ Ψ(l), it is seen that p = l gives c = Γ(l).

11More precisely, a steady state of the system in (25) and (26) is defined as a combination
of c and l, such that c′ = c and l′ = l. From (25) we see that c′ = c can hold only if either
c = 1 ≥ Ψ(l), or c = 0 < Ψ(l). From (26) we see that l′ = l cannot hold if c = 0 < Ψ(l), since
then l′ = l = 1 must hold but Ψ(1) = −Ω < 0, contradicting c = 0 < Ψ(l). If c = 1 ≥ Ψ(l),
then l′ = l implies l = 1.



Note also that the dynasty survives with certainty in steady state, since S = 1
when c = l = 1; recall (10).

c

l

c = Ψ(l)

c = Γ(l)

Ψ(l0)

1l0

1 SS

I

II

III

Lc

Lc

Ll

Figure 3: Phase diagram. The thick solid lines show where c and l are
constant. The dotted line shows a dynasty’s path if not ousted. Starting
in Region I (shaded) the initial ruler undertakes a purge, replacing the
whole administration with incompetent loyalists, implying a discrete jump
to c = 0 and l = 1 in the next period. Thereafter c increases monotonically
over time, while l declines temporarily (in Region II), and then rises again,
as the path enters Region III and converges to the unique steady state (point
SS). A dynasty being ousted amounts to a horizontal jump to l0.

How c and l evolve over time off steady state depends on initial values.
In Figure 3 we distinguish three regions: I, II, and III. Consider first Region
I (the shaded area), where c < Ψ(l). This is the “purge region.” A ruler
starting off here sets c′ = 0 and l′ = 1, replacing the whole administration
with incompetent loyalists. In the next period the offspring survives with
certainty if the threat is internal, and is ousted with certainty if the threat is
external (had we not imposed certain survival).



Regions II and III constitute a “no-purge region,” where c ≥ Ψ(l). Consider
first Region III, where c ≥ Ψ(l) and c ≥ Γ(l). From (25) we see that c′ ≥ c,
and from (26) that l′ ≥ l. That is, both competence and loyalty are increasing
over time. Since Ψ′(l) < 0 it also follows that Ψ(l′) ≤ Ψ(l). Given c ≥ Ψ(l), it
must thus hold that c′ ≥ Ψ(l′), implying that no purge takes place in the next
period. In terms of Figure 3, the dynasty’s path leads away from Region I.

Consider finally Region II, where c ≥ Ψ(l) and c < Γ(l). Here it follows
from (25) that c′ ≥ c, and from (26) that l′ < l, so that competence increases
but loyalty declines from one period to the next. Intuitively, starting off with a
very loyal and incompetent administration (c small, l large) the ruler can only
raise competence by firing loyalists. In Figure 3 it looks as if this “northwest-
erly” path could lead into Region I, but Section D of the appendix shows that
c′ ≥ Ψ(l′) always holds in the next period if starting in Region II. However,
the path eventually enters Region III, at which point l starts to grow again.

3.2.5 Effects of a change in power

In terms of Figure 3 a dynasty’s overthrow is interpreted as a horizontal leap
away from the dotted path, i.e. a drop to l0 on the l-axis. We assume that
l0 is such that 0 < Ψ(l0) < 1.12 This means that for low enough inherited
competence, c < Ψ(l0), a change in power leads to a purge, as the new ruler
starts in Region I; for higher inherited competence, c ≥ Ψ(l0), there is no
purge.

Whether a purge follows a change in power, or not, thus depends on the
inherited competence level, c; on the new loyalty level, l0; and on the parame-
ters z and φ, which determine the boundary of Region I, i.e. Ψ(l) in (20). We
next sum up how these variables determine a new ruler’s choice whether, or
not, to purge the administration.

A higher l0 makes a purge less likely. This follows because a higher
l0 implies a lower purge threshold, Ψ(l0); note that Ψ′(l) < 0. Intuitively, the
need for a purge is lower when the new ruler enjoys greater initial loyalty from
the inherited administration.

12Using (20) this holds if

1− z(1 + Ω)

1− z
< l0 < 1− zΩ

1− z
.

It is easy to see that the lower boundary is less than the upper boundary (and also less
than one). The upper boundary is positive, and greater than 1/2, because Ω < 1 and
z/(1−z) ≤ 1/2; the latter follows from the assumption that r̂ = z/[φ(1−z)] < 1, and φ ≤ 1/2
[recall (9)]. Thus, there exists some interval on which l0 can fall, such that 0 < Ψ(l0) < 1
holds.



A higher c makes a purge less likely. As described earlier, c constitutes
competence capital inherited from the previous dynasty, which is costlier to
destroy the more of it has been accumulated. Interestingly, since c grows
over time while a dynasty stays in power, purges are thus less likely if the
ousted dynasty had been in power longer. Note also that the probability of
the incumbent dynasty’s survival (S) is increasing along the path, and equals
one in steady state.

This fits with Clague et al. (1996), who document both that good gover-
nance (which we can interpret as competence in our model) increases with the
ruling group’s tenure, and that the probability of a regime being ousted in a
coup is highest in the earlier years of its tenure.

A higher z makes a purge less likely. This follows because an increase
in z shifts down Ψ(l), thus shrinking Region I in Figure 3. (This is shown
in Section E of the appendix.) The intuition is straightforward. A higher z
implies a higher value of competence, making a new ruler more reluctant to
destroy existing competence capital.

A higher φ makes a purge more likely. In Figure 3, an increase in φ
shifts up Ψ(l), thus expanding Region I. (This is also shown in Section E of the
appendix.) Intuitively, a higher φ implies a less favorable competence-loyalty
trade-off, making a purge more attractive to the ruler.

To interpret this result, recall from (8) that φ = κ/(2Bρ), where ρ is the
fraction competent candidates on each point on the circle of circumference B
and 1 − κ measures the fraction loyal candidates at the maximum distance
from the ruler, B/2. A higher φ can thus be interpreted as a lower ρ, due e.g.
to a less educated pool of candidates. This could suggest a causal link from
education to political stability.

3.2.6 A quantitative illustration

Parameter values The model is extremely stylized, so we cannot pursue
any serious calibration exercise. However, some of the qualitative features of
the stochastic paths are easier to understand with the help of some simple
numerical simulations. To that end, we need values for three parameters, φ, z
and l0, and initial conditions for two state variables, c and l. The values we
choose are somewhat arbitrary but we provide some rationales below. These
values are summed up in Table 1.

We set φ at its highest feasible level, given the permissible range in (9),
i.e., φ = 1/2 . This imposes the least favorable loyalty-competence trade-off
to the ruler that is consistent with the assumptions imposed on κ, B and ρ in
Section 3.1.

We set the probability of an external threat, z, to 0.2. We could in-



Parameter Value Comment

z 0.2 Probability of external threat 20%
φ 0.5 At upper bound; loyalty-competence

trade-off tightest possible
l0 0.7248 Fraction loyal to new ruler; 2.5% above

no-purge threshold when c = 1

Initial condition Value Comment

Initial l 0.7248 Same as l0
Initial c 0.25 Arbitrary but below Ψ(l0), ensuring

initial ruler purges administration

Table 1: Parameter values and initial conditions for the baseline case.

terpret this as the frequency of inter-state war, which seems to have varied
greatly across countries/empires, epochs and regimes. For example, in Euro-
pean preindustrial history the war frequency among the Great Powers seems
to have been around 35-90%, then declining around the beginning the 19th
century, followed by a short rise around the two 20th-century world wars,
and sustained peace after that (Lagerlöf 2010). Setting z = 0.2 might be a
reasonable compromise.13

We set l0 to approximately 0.7248, which is 2.5% above the threshold level
that a new ruler’s loyalty level must exceed for him to choose not to purge the
administration if all administrators are competent, c = 1.14 If l0 falls below
that threshold, new rulers would always purge the inherited administration
and the model would not be able to generate any transition to a no-purging
path.

When choosing initial conditions, we set the initial l to l0. Thus, the very
first ruler has the same loyalty base as one who has just ousted the incumbent.

The initial level of c does not matter, as long as it falls below Ψ(l0). (We
set it arbitrarily to 0.25.) Thus, the initial ruler starts in Region I in Figure
3, with a purge, allowing a subsequent transition to a no-purging path to take
place.

Simulations Figure 4 shows the time paths for some dynasty that is never
ousted, corresponding to the case illustrated in the phase diagram in Figure 3.

Figure 5 shows a simulation when, in each period, power changes hands

13Recall also that we assumed r̂ = z/[φ(1− z)] < 1 in order to ensure that some ruler will
choose to purge the administration; see (15). Having set φ = 1/2, we must thus set z < 1/3.

14More precisely, let l̃ be that threshold, defined from 1 = Ψ(l̃). Then l0 = 1.025 · l̃
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Figure 4: Simulated time paths when artificially letting one dynasty sur-
vive forever (S = 1).

with the endogenously determined probability, 1 − S, at which point l drops
to l0 = 0.7248. The economy first goes through a phase with several purges
where competence is destroyed as the incumbent dynasty is ousted, eventually
followed by a transition to a no-purging path when c exceeds Ψ(l0). The length
of each dynasty’s reign is random, as each faces the state-dependent probability
S of surviving. Over each dynasty’s reign competence is increasing over time,
confirming the results in Section 3.2.4, and consistent with e.g. Clague at al.
(1996). We also see that the transition comes in the wake of an exceptionally
long-lived dynasty.

Note also that the time paths, although quite volatile overall, become less
volatile after the transition. Also, the level around which r fluctuates falls,
and S tends to peak at higher levels. That is, the economy transits to a more
stable path.

Figure 6 shows some results from a Monte Carlo simulation, based on
1,000 runs. These show a continuous rise in the mean level of competence
across those 1,000 runs, and a decline in mean loyalty. The decline in loyalty
is driven by a larger fraction of the runs having made transitions to the no-
purging phase; recall that in those purges l jumps to one. The upper-right
panel displays the fraction of the runs in which the shares of competent and
loyal administrators exceed 99%, showing a continual rise in competence and
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Figure 5: Simulated time paths when dynasties survive with the endoge-
nous probability S.

decline in loyalty, mirroring the trends in mean levels. The decline in mean r
and rise in mean S are also worth noting, reflecting rising levels of stability.

3.2.7 Sensitivity analysis

The Monte Carlo results in Figure 6 refer to the baseline set of parameter
values given in Table 1. Figure 7 shows how the paths are altered when
changing some of those.

Higher probability of external threat Consider first a higher risk of
external threat, z = 0.25 (instead of z = 0.2), keeping other parameters and
initial conditions at their baseline values. Most notable, the rise in mean
competence comes earlier, which is not surprising, since z effectively measures
the value of competence.

For later periods, a higher z generates slightly more stability (lower r and
higher S) compared to the baseline case. For earlier periods, however, the
relationship is the reverse. Intuitively, newly arriving dynasties are more likely
to be ousted after their competence-eliminating purges, since they are helpless
when the threat is external, an event which here occurs with higher probability.
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Figure 6: Monte Carlo simulation. The lines are based on 1,000 runs
like that shown in Figure 5.

Relaxed competence-loyalty trade-off Consider next a lower level of φ.
With φ = 0.45 (instead of φ = 0.5) the rise in mean competence and decline
in mean loyalty in Figure 7 both come faster. Also, the increase in stability
is quicker as reflected by the faster decline in r and a higher mean level of S
throughout.

Lower survival probabilities Consider finally a different specification of
the incumbent dynasty’s survival probabilities, now defined as

S = ω [zc + (1− z)l] . (32)

The baseline case thus corresponds to ω = 1; see (10). When setting ω = 0.9
there is no visible transition at all over the 100-period window shown. The rea-
son is that much fewer dynasties survive long enough to accumulate sufficient
competence to induce a new dynasty not to purge the inherited administration.
In other words, exogenously increasing instability in this model endogenously
generates more instability, in the form of more purges when there is a change
in power.
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Figure 7: Sensitivity analysis. The baseline case corresponds to the pa-
rameter values and initial conditions in Table 1 and ω = 1.

4 Conclusions

We have proposed a dynamic framework to study transitions from bad to better
governance in a nondemocracy. Subsequent rulers replace one another, each
seeking to influence his offspring’s chances of staying in power by choosing how
much and in what direction the composition of the administration is adjusted,
in terms of its competence and loyalty.

The underlying idea is that loyalty is specific to a dynasty, whereas com-
petence is not. By selecting administrators who are in some broad sense close
to him, a ruler can insure that they are loyal to his ideological or biological
offspring. However, to find competent administrators he needs to search over
a longer ideological or biological distance. This generates a trade-off between
competence and loyalty, as well as the size of the changes undertaken: big and
rapid changes in the administration are costlier than gradual changes. Im-
proving both loyalty and competence can be done only if changes are gradual,
but destroying competence, by hiring only incompetent loyalists, can be done
in one sweep.

When there is a change in power, the new ruler inherits an administra-
tion whose loyalty lies largely with the previous dynasty. He may therefore
choose to purge the administration, filling the new positions with incompetent



loyalists. He is less inclined to such a purge if more competence has been
accumulated by the preceding dynasty. Intuitively, the higher is the inherited
competence level, the costlier a purge is in terms of lost competence. This
gives rise to path dependence. Once some dynasty has accumulated enough
competence a transition takes place, away from repeated purges to a more
stable no-purging path and a simultaneous rise in the levels of administrative
competence.

One may interpret competence in our model broadly. A competent admin-
istrator may be less corrupt, more supportive of growth enhancing reforms,
and provide better policy advice. Even more broadly, a larger fraction com-
petent administrators may be interpreted as better institutions and political
culture, or stronger state capacity (cf. Besley and Persson 2009, 2010). Such
“capital” is indeed accumulated slowly, and can also (in some instances) be
destroyed quickly, similarly to competence in our model. In that sense, our
simple framework may offer insights into the links between political and eco-
nomic development.

We imposed several strong but helpful assumptions when setting up this
model. For example, we let the ruler care only about his immediate offspring’s
survival chances, and not members of the same dynasty ruling two periods
ahead, which makes him more inclined to destroy competence capital.

We also assumed that a ruler can fire only a random sample of the adminis-
tration. If he could instead primarily replace the disloyal and/or incompetent,
he would be able to build up competence faster, which would speed up the
transition to a no-purging path, although the transition would not be imme-
diate, as long as the ruler faces a competence-loyalty trade-off in recruiting.

One could also let some competent administrators become incompetent
between periods (capturing, e.g., aging or technical change, a form of depre-
ciation of competence capital). This would slow accumulation of competence,
thus delaying the transition to a no-purging path.

Still, the mechanisms that the model captures are intuitive and the model
may serve as a starting point for thinking about other frameworks to study
these issues.



APPENDIX

A Finding optimal r

A.1 Case (A): c > c.

First note that Ŝ(r; c, l) = S(r, 0; c, l) is linear in r for r > r̂. If c > c, then
S(r, 0; c, l) is decreasing in r. In other words, conditional on recruiting only
incompetent loyalists (r > r̂ and q = 0) the ruler wants to replace as few
administrators as possible by setting r as low as possible. It follows that the
maximum point cannot be greater than r̂, and must be on [0, r̂]. For r ≤ r̂,

we see from (16) that Ŝ(r; c, l) = S(r, 1; c, l) is quadratic in r, and the first-
order condition gives the (unconstrained) maximum point of S(r, 1; c, l) as rmax

defined in (19). Note that rmax > 0 (for c < 1 and l < 1), so Ŝ(r; c, l) cannot
have a maximum point at r = 0. We must also examine if rmax falls below r̂.
Suppose that rmax ≥ r̂. Comparing (15) and (19) we see that this is the case
if, and only if, c ≤ c, where c is given by (18). But c ≤ c cannot hold if c > c.
Thus, if c > c, then the optimal choice of r is rmax < r̂ and (14) implies that
optimal q equals 1.

A.2 Case (B): c < c.

From (15) and (19) we see that c < c implies rmax > r̂. This means that

Ŝ(r; c, l) = S(r, 1; c, l) is increasing in r for r < r̂. In other words, conditional
on recruiting only competent candidates (r < r̂ and q = 1) the ruler wants
to replace as many administrators as possible by setting r as high as possible
on [0, r̂]. Thus, the maximum point cannot be on [0, r̂). Moreover, for c < c

(which implies c < c) we can see from (16) that Ŝ(r; c, l) = S(r, 0; c, l) is
increasing in r for r > r̂. Thus, if c < c, then the optimal choice of r is 1.
Also, (14) then implies that optimal q equals 0.

A.3 Case (C): c ∈ [c, c].

In this case Ŝ(r; c, l) in (16) has two local maximum points, r = 1 and r = rmax,
where rmax ∈ [0, r̂]. See Figure 2 for an illustration.

First note from (16) that

Ŝ(1; c, l) = S(1, 0; c, l) = 1− z, (A1)



which simply states that the offspring of a ruler who replaces the whole admin-
istration with incompetent loyalists (setting r = 1 and q = 0) survives with
certainty if the threat is internal, which happens with probability 1 − z; else
the offspring is ousted with certainty.

Next, using (16) we see that Ŝ(rmax; c, l) = S(rmax, 1; c, l) > (<,=)Ŝ(1; c, l) =
1− z is equivalent to

zc+(1−z)l+rmax[z(1−c)+(1−z)(1−l)]−(1−z)φ (rmax)
2 > (<,=)1−z, (A2)

which can be written as

P (rmax, D) > (<,=)0 (A3)

where

P (r,D) = −φr2 +

(
z

1− z
+D

)
r −D, (A4)

and

D = 1− l −
(

z

1− z

)
c. (A5)

Note from (17), (18) and (A5) that c ∈ [c, c] implies that

D ∈
[
0,

z

1− z

]
. (A6)

Note that P (0, D) = −D ≤ 0, and P (1, D) = [z/(1− z)]− φ < 0, since we
have assumed that z/(1− z) < φ to ensure that r̂ < 1; see (15). It can also be
seen that ∂P (r,D)/∂r = 0 at r = rmax, and

∂2P (r,D)

∂r2
= −2φ < 0. (A7)

Thus, P (r,D) is inversely U-shaped when graphed against r, reaching its max-
imum level, P (rmax, D), when r = rmax. Next note from (A4) that an increase
in D, at given r < 1, shifts P (r,D) down:

∂P (r,D)

∂D
< 0, (A8)

for all r < 1. We can now define µ as the level of D for which the maximum
level of P (r,D) is exactly zero, i.e.,

P (rmax, µ) ≡ 0. (A9)



That is, if c and l are such thatD = µ, then Ŝ(rmax; c, l) = Ŝ(1; c, l) = 1−z;
this is the case illustrated in Figure 2. More generally, from (A8) and (A9)
and the definition of P (r,D) the following chain of implications now follows:

D > (<,=)µ ⇔ P (rmax, D) < (>,=)0 ⇔ Ŝ(rmax; c, l) < (>,=)Ŝ(1; c, l).
(A10)

In other words, if D lies above µ, then the ruler’s optimal choice is r = 1
and q = 0 (a purge); if D falls below µ, then the ruler’s optimal choice is
r = rmax, and q = 1. Recall from (A5) that D depends (linearly) on c and l,
so if we can find an expression for µ in terms of exogenous parameters, then
we have a (linear) condition determining whether Ŝ(rmax; c, l) or Ŝ(1; c, l) is
larger. Below we solve for µ in terms of the exogenous z and φ.

A.3.1 Finding an expression for µ

Using (19) and the definition of D in (A5) we can write P (rmax, D) in terms
of D, z, and φ only. First note that

rmax =
z(1 − c) + (1− z)(1 − l)

2φ(1− z)
=

z
1−z

+D

2φ
. (A11)

We can then use (A4) and (A11) to derive the following:

P (rmax, D)
= −φ(rmax)

2 +
(

z
1−z

+D
)
rmax −D

= −φ(rmax)
2 + 2φ(rmax)

2 −D
= φ(rmax)

2 −D

= φ
( z

1−z
+D

2φ

)2

−D

= 1
4φ

(
z

1−z
+D

)2 −D

= 1
4φ

[(
z

1−z

)2
+D2 − 4φ

(
1− z

2φ(1−z)

)
D
]
.

(A12)

Evaluating (A12) at D = µ it follows that we can define

α =
(

z
1−z

)2
,

γ = φ
[
1− z

2φ(1−z)

]
> 0,

(A13)

and then write P (rmax, µ) = 0 as

µ2 − 4γµ+ α = 0, (A14)



which has solutions
µ = 2γ ±

√
4γ2 − α. (A15)

Recall from (A6) that we are here restricting attention to D ≤ z/(1 − z).
Thus, the threshold level of D that we are looking for, i.e. µ, must fall below
z/(1− z) too. Using (A13) some algebra then shows that we can rule out the
larger root in (A15). We can then use (A13) to derive

4γ2 − α = 4φ2

[
1− z

φ(1− z)

]
, (A16)

and

µ = 2γ −
√

4γ2 − α = 2φ

[
1−

√
1− z

φ(1− z)

]
− z

1− z
, (A17)

which is an expression for the threshold level of D that we were seeking, in
terms of the exogenous variables φ and z. Note from (A17) that

(
1− z

z

)
µ =

2φ(1− z)

z

[
1−

√
1− z

φ(1− z)

]
=

2

r̂

[
1−

√
1− r̂

]
− 1 ≡ Ω,

(A18)
where the second equality uses the notation in (15).

Thus, using (A5) we see that D = 1− l− [z/(1− z)]c = µ is equivalent to

c =

(
1− z

z

)
(1− µ− l) =

(
1− z

z

)
(1− l)− Ω ≡ Ψ(l), (A19)

where the second equality uses (A18), and where Ψ(l) is the same expression
as in (20). More generally, it is now easily seen, using (A5) and (A10), that

c < (>,=)Ψ(l) ⇔ D > (<,=)µ ⇔ Ŝ(rmax; c, l) < (>,=)Ŝ(1; c, l). (A20)

In other words, we have now shown that if c < Ψ(l), then Ŝ(rmax; c, l) <

Ŝ(1; c, l) and the ruler’s optimal choice is r = 1 and q = 0; if c > Ψ(l), then
the ruler prefers r = rmax and q = 1. In the special case when c = Ψ(l), the
ruler is indifferent and we may assume that he chooses r = rmax and q = 1.

A.4 Cases (A) to (C) together

It can be seen that Ω ∈ [0, 1]; see Section B of this appendix. From Ω ≤ 1 it
follows that c ≤ Ψ(l); see (A19) and (18). Thus, c < c implies c < Ψ(l). Case
(B) above, for which r = 1 and q = 0 in optimum, then becomes a special case



of c < Ψ(l).
Similarly, Ω ≥ 0, (A19) and (17) imply that c ≥ Ψ(l). Thus Case (A)

above, for which r = rmax and q = 1 in optimum, becomes a special cases of
c > Ψ(l).

B Showing that Ω ∈ [0, 1]

Here we show that Ω in (A18) falls on the interval [0, 1], which in turn can
easily be seen to imply that Ψ(l) ∈ [c, c]. First note that Ω ≥ 0 is equivalent
to the following inequalities:

1 ≤ 2
r̂

[
1−

√
1− r̂

]
r̂
2
≤ 1−

√
1− r̂√

1− r̂ ≤ 1− r̂
2
> 0

1− r̂ ≤ 1− r̂ +
(
r̂
2

)2
,

(A21)

which always holds. Next note from (A18) that Ω ≤ 1 is equivalent to the
following inequalities:

1 ≥ 2
r̂

[
1−

√
1− r̂

]
− 1

2 ≥ 2
r̂

[
1−

√
1− r̂

]

r̂ ≥ 1−
√
1− r̂√

1− r̂ ≥ 1− r̂ =
√
1− r̂ ·

√
1− r̂

1 ≥
√
1− r̂

(A22)

which always holds.

C Deriving l′ when c ≥ Ψ(l)

When c ≥ Ψ(l), and thus r = rmax and q = 1, we see from (12) that l′ is given
by

l′ = l(1− rmax) + rmax − φ(rmax)
2 = l + (1− l)rmax − φ(rmax)

2. (A23)

First focus separately on the last two terms of (A23). Applying (19) we
see that

(1−l)rmax =
z(1− c)(1− l) + (1− z)(1 − l)2

2φ(1− z)
=

1

4φ

[
2z(1− c)(1− l)

1− z
+ 2(1− l)2

]
,

(A24)



and

φ(rmax)
2 = φ

[
z(1−c)+(1−z)(1−l)

2φ(1−z)

]2

= z2(1−c)2+(1−z)2(1−l)2+2z(1−c)(1−z)(1−l)
4φ(1−z)2

= 1
4φ

[(
z

1−z

)2
(1− c)2 + (1− l)2 + 2z(1−c)(1−l)

1−z

]
.

(A25)

Now (A23), (A24) and (A25) show that

l′ = l + 1
4φ

[
2z(1−c)(1−l)

1−z
+ 2(1− l)2 − z2(1−c)2

(1−z)2
− (1− l)2 − 2z(1−c)(1−l)

1−z

]

= l + 1
4φ

[
(1− l)2 −

(
z

1−z

)2
(1− c)2

]
.

(A26)

D Showing that the path cannot lead from Re-

gion II to I

In Region II it holds that c ≥ Ψ(l) and c < Γ(l), implying from (25), (26) and
(31) that c′ ≥ c and l′ < l. To show that c′ and l′ cannot lie in Region I we
need to show that c′ ≥ Ψ(l′). From (26) we can write the fraction disloyal in
the next period as

1− l′ = 1− l +
1

4φ

[(
z

1− z

)2

(1− c)2 − (1− l)2

]
, (A27)

which together with (20) gives

Ψ(l′) =
(
1−z
z

)
(1− l′)− Ω

=
(
1−z
z

)
(1− l)− Ω+ 1−z

4φz

[(
z

1−z

)2
(1− c)2 − (1− l)2

]

= Ψ(l) + 1−z
4φz

[(
z

1−z

)2
(1− c)2 − (1− l)2

]

= Ψ(l) + z(1−c)2

4φ(1−z)
− (1−z)(1−l)2

4φz
,

(A28)

where the third equality uses Ψ(l) =
(
1−z
z

)
(1− l) − Ω from (20). Next, (25)

gives the fraction competent in the next period as

c′ = c+ (1− c)
[
z(1−c)+(1−z)(1−l)

2φ(1−z)

]

= c+ 2z(1−c)2

4φ(1−z)
+ (1−l)(1−c)

2φ
.

(A29)



Using (A28) and (A29) we see that c′ ≥ Ψ(l′) can be written as

c+
2z(1 − c)2

4φ(1− z)
+

(1− l)(1− c)

2φ
≥ Ψ(l) +

z(1 − c)2

4φ(1− z)
− (1− z)(1 − l)2

4φz
, (A30)

or

c−Ψ(l) +
z(1 − c)2

4φ(1− z)
+

(1− l)(1− c)

4φ
+

(1− z)(1 − l)2

4φz
≥ 0, (A31)

which always holds, since c ≥ Ψ(l), and the remaining three terms are all
non-negative.

E How Ψ(l) shifts when changing z and φ

The expression for Ψ(l) in (20), using the expressions for Ω in (21) and r̂ =
z/[φ(1− z)] in (15), can be rewritten as

Ψ(l) =
(
1−z
z

)
(1− l) + 1− 2

r̂

[
1−

√
1− r̂

]

=
(
1−z
z

)
(1− l) + 1− 2φ(1−z)

z

[
1−

√
1− z

φ(1−z)

]

=
(
1−z
z

)
(1− l) + 1− 2φ(1−z)

z

[
1−

√
1− z

φ(1−z)

]

= 1−l
x

+ 1− 2φ
x

[
1−

√
1− x

φ

]
≡ Ψ̃(l, x, φ),

(A32)

where we have defined x = z/(1 − z). Note that r̂ = z/[φ(1 − z)] = x/φ < 1
(by earlier assumption) and that ∂x/∂z > 0. To show that Ψ(l) shifts down
when z (or x) increases, and up when φ increases, the task is to show that

∂Ψ̃(l, x, φ)/∂x < 0 and ∂Ψ̃(l, x, φ)/∂φ > 0. First note that

∂Ψ̃(l,x,φ)
∂x

= − (1−l)
x2 − 2φ


−

1

2
(1− x

φ)
−

1

2 (− x
φ)−

[
1−(1− x

φ)
1

2

]

x2




= − (1−l)
x2 − 2φ

x2(1− x
φ)

1

2

[
x
2φ

−
(
1− x

φ

) 1

2

+
(
1− x

φ

)]

= − (1−l)
x2 − 2φ

x2(1− x
φ)

1

2

[
1− x

2φ
−
(
1− x

φ

) 1

2

]
< 0,

(A33)



where it can be seen that the expression in square brackets following the last
equality is positive. Then note that

∂Ψ̃(l,x,φ)
∂φ

= − 2
x

[
1−

(
1− x

φ

) 1

2

]
− 2φ

x

[
−1

2

(
1− x

φ

)
−

1

2

(
− x

φ2

)
(−1)

]

= − 2
x

[
1−

(
1− x

φ

) 1

2

]
+ 2

x

[
1
2

(
1− x

φ

)
−

1

2 x
φ

]

= 2

x(1− x
φ)

1

2

[
1− x

2φ
−

(
1− x

φ

) 1

2

]
> 0,

(A34)

where (again) it can be seen that the expression in square brackets following
the last equality is positive.
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