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Abstract: Over the past several centuries European wars became si-

multaneously less frequent, and initially more deadly before governments

stopped fighting them altogether. We set up a unified growth model which

endogenously replicates these trends, together with a takeoff from Malthu-

sian stagnation to sustained growth in per-capita incomes. In environments

with scarce resources – meaning high population density, and/or low levels

of technology – governments are more prone to start wars to try to con-

quer new land. Technological progress mitigates resource scarcity, making

war less likely; at the same time, if war breaks out it is deadlier if technolo-

gies are more advanced. Thus, the transition to sustained growth passes a

very deadly intermediate phase, when wars have not yet become improbable

events but new technologies have made them extremely lethal if and when

they break out. We suggest that this is roughly what happened in Europe

during the first half of the 20th century.
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1 Introduction

“We need land on this earth [...] We must continue to receive

what is necessary from future apportionments until such time as

we are satiated to approximately the same degree as our neigh-

bors.”

German industrialist Walter Rathenau in 1913 (as quoted

from Hardach 1977, p. 8)

“Our nation seems to be at a dead-lock, and there appears

to be no solution for the important problems of population and

food. The only way out, according to public opinion, is in the

development of Manchuria and Mongolia.”

Lieutenant-General Kanji Ishihara, justifying the Japanese

military expansion in the 1930’s (as quoted from Yasuba 1996,

p. 553)

The transition from Malthusian stagnation to modern growth that began

in Europe a couple of centuries ago was paralleled by certain time trends in

war. First, wars became less frequent ; since 1945 Western Europe has been

completely peaceful. Second, wars became more lethal ; in particular, the two

world wars 1914-1945 were far more deadly than previous Great Power wars.

We set up a model where these time trends are driven by technological

progress. New technologies make wars more lethal if they break out, which

also makes governments less inclined to fight them. Moreover, by mitigating

resource scarcity technological progress reduces resource competition, thus

also making governments less inclined to start wars.

Wars in this model are Malthusian, in the sense that they are caused by

competition for land and other resources. We do not suggest that resource

competition has been the only factor behind every war, but as discussed at

length later on, it seems to have been one important factor.

In this model, governments of two symmetric countries have an incentive

to try to conquer land from eachother to alleviate domestic resource scarcity.

No country gains from war in equilibrium. However, if one country attacks,
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the other’s best response is to also be aggressive, because its people are

killed anyhow; being peaceful only leads to land being lost. At low levels of

technology, wars are not very lethal and resource scarcity is a grave problem.

In this environment, the only equilibrium is one with war.

For sufficiently advanced technology, however, being peaceful becomes the

best response if the other country is peaceful. Thus, the two countries can

coordinate on a peaceful equilibrium. Peace in turn enables further growth

in technology and living standards, thus making peace perpetuate itself over

time.

The model generates a path which leads in the end to sustained peaceful

prosperity, but also passes a very deadly war phase in the transition. Europe

may have passed such a phase in the first half of the 20th century.

We also allow for a random element in governments’ war decisions. This

makes the take-off from stagnation to growth, and from war to peace, differ-

ently timed across countries. Over time the model generates an initial rise in

the cross-country variance in war death rates, before permanent peace breaks

out. This also seems consistent with the data.

An extended framework allows agents to choose the number of children

and human capital investment in each child. Although more complex, this

setting can replicate an initial joint rise in the growth rates of population and

per-capita consumption, and a subsequent spurt in per-capita consumption

growth and decline in population growth. This is consistent with both the

three-stage development process described by e.g. Galor and Weil (1999,

2000), and the war trends described here. The model also replicates a “dent”

in the population growth path, observed in Western European history (cf.

Figure 7).

The rest of this paper continues in Section 2 by relating it to earlier

literature. Thereafter Section 3 describes a number of facts about war, in

particular in European history. Section 4 sets up a model where fertility is

exogenous. Section 5 models fertility and human capital investment endoge-

nously. Finally, Section 6 ends with a concluding discussion.
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2 Existing literature

A large microeconomic literature on conflict examines how rational agents

weigh appropriation (stealing) against production. (See e.g. Grossman 1991;

Grossman and Kim 1995; Hirschleifer 1988, 2001.) However, these usually

use static models and do not explain the time-trends of war discussed here.

Neither does this literature actually model any link from resource scarcity

to violence. The one exception is Grossman and Mendoza (2003), who set up

a model where competition for resources is induced by a desire for survival.

They show that if the elasticity of the survival function is decreasing in

consumption more scarcity leads to more violence.1 Our survival function

satisfies this Grossman-Mendoza condition.

There is also work on how social conflicts within societies can hinder

development, both theoretical (e.g., Benhabib and Rustichini 1996) and em-

pirical (e.g., Collier and Hoeffler 1998, 2004; Easterly and Levine 1997).

More applied papers include Martin et al. (2005), who examine the relation-

ship between trade, war, and the geographical distances between belligerent

countries. Iyigun (2007) documents the role played by the Ottoman wars in

reducing fighting between Christian nations.

These papers do not explain the particular century-long time trends de-

scribed here, or how these relate to industrialization.2 In that sense, our

contribution relates more closely to a literature trying to explain growth in

population and per-capita income, not only over the last couple of decades,

but several centuries (or millennia) back. See, among others, Cervellati and

Sunde (2005), Galor and Moav (2002), Galor and Weil (2000), Hansen and

Prescott (2002), Jones (2001), Lagerlöf (2003a,b; 2006), Lucas (2002), and

Tamura (1996, 2002). However, none of these discuss war.3

1Other papers where “harder times” lead to more conflict include Dal Bó and Powell
(2006), who allow for asymmetric information about the size of the contested pie.

2However, Iyigun (2007) does put a time dummy in his regressions to control for the
secular decline in warfare that we seek to explain. Also, quite consistent with our story,
he suggests that this decline may have been due to rising living standards (ibid., Footnote
12).

3One possible exception is Brander and Taylor (1998), who discuss the (probably vio-
lent) downfall of the civilization on Easter Island. However, they do not explicitly model
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We also differ methodologically from many of these papers. For example,

Galor and Weil (2000) restrict themselves to using phase diagrams to derive

the time paths generated by complicated non-linear and multi-dimensional

dynamical systems. We use both phase diagrams and simulations.

Easterly, Gatti, and Kurlat (2006) examine empirically the link between

mass killings (including genocides), per-capita income, and democracy. They

do not look at war deaths as such, but do note that episodes of mass killings

are worse and more common in times of war (see also Rummel 1997). Like we

document here for war deaths, they find that mass killings are non-linearly

related to economic development, and initially increase with per-capita in-

come. The potential causes that they discuss indeed relate to the mechanisms

we model: “Economic development brings advances in technology and social

organization that lower the cost of mass killings” (ibid., p. 131).

Several other papers have a more indirect connection. Alesina and Spo-

laore (2003, Ch. 7) model defense spending and the optimal size of nations.

Johnson et al. (2006) explain why death tolls in many insurgencies (e.g.,

Iraq and Colombia) tend to follow a power-law distribution. These studies

are not directly relevant for understanding the longer-term war trends, or

takeoffs from stagnation to growth, discussed here.

3 Background

3.1 The Malthusian causes of war

Resource competition is a common factor behind violent conflict in hunter-

gatherer societies (Harris 1974, Ember 1982; see Lagerlöf 2007 for an overview).

It is often suggested that scarcity brought a violent end to many ancient civ-

ilizations, e.g. the Anasazi and Easter Island (Diamond 2005).

The links from resource scarcity to conflict are today seen most clearly in

poorer regions, which are more dependent on land and agriculture. The 1969

so-called Soccer War between Honduras and El Salvador was the outcome of

depletion of agricultural lands in El Salvador, and subsequent migration into

violence or conflicts over resources.
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Honduras (Durham 1979). André and Platteau (1998) document how over-

population and competition for agricultural land worked as a factor behind

the 1994 civil war and genocide in Rwanda. Miguel et al. (2004) find a strong

negative effect of economic growth on the likelihood of outbreak of civil war

among 41 African countries, using rainfall as an exogenous instrument.4

Rich countries tend to be less prone to war and violent conflict. Friedman

(2005) lists numerous examples of how rising living standards have made

Western societies more open, democratic, and peaceful. When Europe was

poor, famine and high food prices contributed to many episodes of social

unrest. One example is the French revolution in 1789. McNeill (1982, p. 185)

writes that “the fundamental disturber of Old Regime patterns in France and

England in the last years of the eighteenth century was population growth.”

The European colonization of the rest of the world can also be inter-

preted as the outcome of European population pressures and a hardening

competition for land (Pomeranz 2001). The English colonization of North

America served partly to secure supply of wood for ship building, thus en-

abling British imperial expansion at a time when the British Isles had been

largely deforested (Albion 1965). The Indian Wars fought in what is today

the Dakotas and Montana in the United States were clearly about land for

agriculture and mining.

WWI may to some extent be linked to struggles over land and resources,

in particular coal and iron ore (Choucri and North 1975; McNeill 1982, pp.

310-316). Scarcity was particularly strongly felt in Germany, which lacked

the colonial assets of its Atlantic neighbors.5 From the late 19th century,

Germany’s population and energy consumption rose more rapidly than that

of e.g. the United Kingdom and France.6 This was paralleled by Germany’s

4Some seek to attribute almost all conflicts in developing countries to resource com-
petition. Homer-Dixon (2001) proposes that it is one factor behind e.g. the guerrilla
insurgencies in Peru and the Philippines.

5Acemoglu et al. (2005) document a rise of the Atlantic regions and cities of Europe
following the discovery of the Americas, suggesting that Germany’s geographical location
may have mattered for its lack of colonies.

6Germany’s population rose from about 40 million in 1870 to about 67 million in 1913.
The corresponding population numbers for France were 37 million in 1870 and 40 million
in 1913 (Mitchell 2003, Table A5; Browning 2002, Table 9). From 1890 to 1913 France’s
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emergence as a Great Power, and its search for “a place in the sun.” Before

WWI, the so-called the Pan-German League had formulated a war-aims pro-

gram containing explicit demands for territorial conquests (Hardach 1977,

Ch. 8). Germany’s land-owning elite (the Junkers) wanted more agrarian

lands; industrialists called for the annexation of territories rich in coal and

iron ore; see the words of Walter Rathenau in the introduction. Indicatively,

the most coal rich regions of Europe, such as Saar and Silesia, were highly

contested in the Paris peace talks after WWI.

It is well known that pre-WWII Nazi agitation held that Germany suffered

from a shortage “living space” (lebensraum). In the early phases of WWII,

living standards in Germany were in fact markedly improved due to war

conquests, for example through loot sent by soldiers in the occupied areas

(Aly 2005).

Likewise, competition for natural resources and land mattered for Japan’s

conquests in East Asia, and its occupation of Manchuria (Ferguson 2006, pp.

285-297); see the words of Kanji Ishihara in the introduction.

Today each unit of land can feed many more people than in the 1930’s,

and most resources are traded internationally; going to war for resources

seems irrational. However, as discussed at length by Ferguson (2006, pp.

281-297), resource competition may have played a role even as late as in the

1930’s. Indicatively, the most densely populated countries, with the lowest

land-to-labor ratios in agriculture, and with the fewest colonies (in particular

after WWI), were the three axis powers: Germany, Japan, and Italy. (Great

Britain’s population was denser but they also had a huge empire.) The axis

powers also lacked raw materials, such as ore, coal, rubber, oil, and crucial

metals (ibid., pp. 283-284). In between them, the United States, the Soviet

Union, and the British Empire controlled most of these supplies. As Ferguson

(2006, p. 284) sums it up, “the case that Germany, Italy, and Japan lacked

living space was therefore far from weak.”

Obviously, resource competition has not been the only factor behind every

war, or even the most important. We merely suggest it was one factor, and

energy consumption rose by 80%, whereas that of Germany rose by 224% (Browning 2002,
Table 10).
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that it became less important with time.7

3.2 The frequency of war

Figure 1 shows a declining trend in the number of ongoing wars, starting

in 1500. The two indices shown are based on data from Levy (1983), and

Wikipedia, respectively. The Levy data consist of wars fought by Great

Power nations (mostly Western European and technological leaders), from

which we have selected wars involving two or more Great Powers.8 From the

Wikipedia data we selected wars involving Western European countries. For

further details, see Section A.1 in the Appendix.

This downward trend may not be very surprising. It is well known that

earlier wars lasted longer (as emphasized by Levy 1983, p. 123). Indicatively,

these are often known to us by names such as the Thirty Years’ War.9

One may note in Figure 1 that war frequency rose before the 17th century.

One possible explanation, consistent with our story, is that land was still

relatively abundant in the wake of the Black Death of the 14th century. Clark

(2006) finds that agricultural real wages in England peaked in 1450, then

declined to reach a trough in the 1630’s, and then rose again as agricultural

productivity began to increase. Thus, Malthusian pressures may have driven

the temporary rise in war frequency before the mid 17th century in Figure

1.10

7The fact that the most conflict-ridden region of the world today is the oil-rich Mid-
dle East suggests that abundance of resources, rather than scarcity, now makes a region
more war prone. However, scarcity may matter in the sense that competition for natural
resources is more intense in regions where living standards are low, e.g. the Middle East
and Nigeria. Oil abundance is not a curse in regions where living standards are higher,
like Norway and Alaska.

8In the model the belligerent nations will be technologically symmetric, so it makes
sense to focus on wars between different Great Powers.

9Note, however, that the Thirty Years’ War (1608-1648) is actually categorized as four
shorter wars in the Levy (1983) data; see Table A.1 and Section A.1 in the Appendix.

10Another possibility is that Europeans up until about 1650 were too busy fighting the
Ottomans to engage in wars against eachother (Iyigun 2007).
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3.3 The lethality of war

Despite the downward trend in war frequency, Figure 2 shows an upward

trend in the deadliness of wars involving two or more Great Powers. Notably,

WWI and WWII, the last Great Power wars fought in Western Europe, were

more lethal than all wars of the preceding centuries. However, Figure 2

does not include those two outliers: the upward trend is still clearly present;

including WWI and WWII would strengthen the trend further.

Figure 2 also reveals a rise in the variance in war death rates. This would

show up more clearly if we were to include wars not involving two or more

Great Powers, which do not display the same rise in lethality (cf. Table

A.1). This suggests, consistent with our story, that the level of technolog-

ical (and/or economic/institutional) development of the belligerent powers

positively impacts the deadliness of war (cf. Easterly et al. 2006).

4 Model A: exogenous fertility

Consider now a two-period overlapping-generations model, where agents live

as children and adults. Adults rear children, some of whom die before reach-

ing adulthood. There are two sources of death (other than old age): starva-

tion and war. Those children who survive both war and starvation become

adults in the next period.

There are two countries whose governments may fight wars to gain terri-

tory, with the aim to maximize the agents’ survival rates. The two countries

are indexed I and II. Each starts off with identical population, technology,

and unit land endowments in the first period. This symmetry will later be

seen to imply that, regardless of whether there is war or peace, no coun-

try ever gains any territory from the other in equilibrium, making the two

countries identical in all subsequent periods.

The number of children born by each adult agent is here exogenous and

denoted n. (Section 5 endogenizes fertility.) In country j (j =I,II), a fraction

1−sj,t of these children die from purely non-violent causes, such as undernu-

trition and childhood disease; we call it starvation, for short. This mortality

rate depends on time spent nurturing the children, keeping them clean, etc.,
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and on the amount of food the parent can collect, which in turn depends on

her time spent competing for food.11 The parent has a unit time endowment,

and the fraction of her n children surviving starvation is given by

sj,t = q(cj,t)(1− rj,t), (1)

where rj,t denotes the parent’s time in resource competition, and 1 − rj,t is

the time spent nurturing the children. The amount of food procured, cj,t,

determines survival from starvation through the following function:

q(c) = max

{
0,
c− c

c

}
, (2)

where c will be called subsistence consumption. That is, the parent must

procure more than c for any of the children to have a chance of survival. If,

in any period, available food per agent falls below c the whole population

dies out. Note also that q(c) goes to one as c goes to infinity.

4.1 Available resources

For simplicity we abstract from production, and let agents take as given

the amount of food generated per unit of land. More precisely, agents in

country j compete over a land area equal to mj,t, and each unit of land

generates Aj,t units of food, where Aj,t measures the productivity of the

available technology.

Country j has a continuum of Pj,t (adult) agents. Let the average time

spent in resource competition across all Pj,t agents in country j be denoted

Rj,t. An agent who fights rj,t units of time then acquires

cj,t =
rj,t

Rj,t

mj,tAj,t

Pj,t

(3)

units of food. In a symmetric equilibrium food per agent thus equalsmj,tAj,t/Pj,t.

11The food procured here influence the survival probabilities of the n children. It can
alternatively be thought of as being eaten by the mother, thus prolonging her life, making
her able to rear more offspring. The point is that the larger is the total amount of food
collected, the more agents enter as adults in the next period.
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Section A.2 in the Appendix shows that, if mj,tAj,t/Pj,t > c, the equilib-

rium time spent in resource competition, Rj,t, becomes:12

Rj,t =
c

cj,t
=

cPj,t

mj,tAj,t

. (4)

Using (1), (2), (3), and (4) the equilibrium survival rate from starvation (if

mj,tAj,t/Pj,t > c) can be derived as:

sj,t = q

(
mj,tAj,t

Pj,t

)
(1−Rj,t) = (1−Rj,t)

2 =

(
1− cPj,t

mj,tAj,t

)2

. (5)

4.2 Technology

The level of technology in country j is updated as follows:

Aj,t+1 = Aα
j,tP

β
j,t. (6)

Letting population enter (6) may capture the type of scale effects occurring

in models with non-rivalries in the use of technology (Kremer 1993, Jones

2005). That is, the more people there are to make inventions and discoveries,

the faster is the rate of technological progress.

To ensure that a peaceful balanced growth path exists we make the fol-

lowing assumption:

Assumption 1 α ∈ (0, 1), β > 0, α+ β > 1.

4.3 Four-dimensional dynamics

In peace, nsj,t children per adult agent survive to adulthood; in war, a frac-

tion 1 − vj,t of these children are killed, and never enter the adult phase.

We let the war survival rate be given by vj,t = λ/(λ + Ai,t), where λ > 0.

Note that vj,t is decreasing in the enemy’s technology, which makes intuitive

sense. However, we shall soon impose assumptions which imply that the two

12If mj,tAj,t/Pj,t ≤ c the population would die out. Simulations will later verify that we
can choose parameters and initial conditions such that the economy follows a path where
mj,tAj,t/Pj,t > c in all periods, and in both countries (j =I,II).

12



countries are identical in all periods, so letting vj,t depend on Aj,t instead of

Ai,t would not change the results.

This gives the following dynamic equation for population:

Pj,t+1 = wj,tnsj,tPj,t = wj,tn

(
1− cPj,t

mj,tAj,t

)2

Pj,t, (7)

where

wj,t =

{
λ

λ+Ai,t
= vj,t in war,

1 in peace,
(8)

for (i, j) ∈ {(I,II), (II,I)}.
At any given mj,t (j =I,II), (6), (7), (8) constitute a state-dependent

four-dimensional system of difference equations, with two dynamic equations

and two state variables for each country (Aj,t and Pj,t, for j =I,II). What

path the economy follows depends on whether it is in a state of war or peace.

Moreover, as we shall see below, it switches between these states with a

probability which in turn evolves endogenously over time.

4.4 War and peace

The state of the world (war or peace) depends on the decisions made by

the governments (or leaders) of the two countries. We could assume any

sort of government objective function, obviously without fully capturing the

belligerents’ motives in every single war ever fought. The ambition here is

to provide some plausible microfoundation for war. To that end, we assume

that the governments maximize the survival rates of their citizens.

The potential benefit of war is the conquest of land. Each country j

(j =I,II) starts off period t with mj,t−1 units of land. If one country behaves

aggressively, and the other is non-aggressive (i.e., fails to defend itself), the

aggressor wins a fraction χt of the non-aggressor’s territory, where (as ex-

plained below) χt is stochastic. If both countries are aggressive, or if both

are non-aggressive, no territory changes hands (mj,t = mj,t−1). That is, let

the variable Sj,t be such that Sj,t =A if country j’s government is aggressive,
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and Sj,t =N if it is non-aggressive (j =I,II). Then mj,t is given as follows:

mj,t =


mj,t−1 + χtmi,t−1 if Sj,t = A and Si,t = N,

mj,t−1(1− χt) if Sj,t = N and Si,t = A,

mj,t−1 if Sj,t = Si,t,

(9)

for (i, j) ∈ {(I,II), (II,I)}. Note again that no territory is redistributed if both

countries behave identically, either aggressively, or non-aggressively.

The land-conquest variable, χt, is an i.i.d. random variable, uniformly

distributed on [0, 1] (and, for simplicity, the same for both governments, and

known to both of them13). These shocks will make it possible to talk about

the probability of war breaking out. They also have some intuitive and in-

teresting interpretations. They may be thought of as changes in military

circumstances that impact how much land can be seized. Alternatively, we

may think of the world as having some true constant χ (perhaps zero), but

leaders being irrational, so that the random realizations of χt capture how

much land they “believe” they can take. That is, a high χt could be in-

terpreted as a relatively war-prone leadership, such as that of Hitler or the

Japanese military command in the 1930’s.

The governments’ payoffs are given by the survival rates of their citizens

from war and starvation. Let the payoff to country j’s government be denoted

πj,t = wj,tsj,t. Using (5), (8), and (9) we can write this as follows:

πj,t =



vj,t

[
1− cPj,t

(mj,t−1+χtmi,t−1)Aj,t

]2

≡ πA,N
j,t if Sj,t = A and Si,t = N,

vj,t

[
1− cPj,t

mj,t−1(1−χt)Aj,t

]2

≡ πN,A
j,t if Sj,t = N and Si,t = A,

vj,t

[
1− cPj,t

mj,t−1Aj,t

]2

≡ πA,A
j,t if Sj,t = Si,t = A,[

1− cPj,t

mj,t−1Aj,t

]2

≡ πN,N
j,t if Sj,t = Si,t = N,

(10)

for (i, j) ∈ {(I,II), (II,I)}.
We next assume that the two countries have identical levels of technology

and population in period 0, and that both start off with territorial holdings

equal to unity.

13If the conquest shocks differ between the two countries our results below still hold,
but with χt replaced by max{χI,t, χII,t}.
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Assumption 2 PI,0 = PII,0, AI,0 = AII,0, and mI,−1 = mII,−1 = 1.

We can now state the following, proven in Section A.4 of the Appendix.

Proposition 1 Under Assumption 2 and considering only pure-strategy equi-

libria, in all periods t ≥ 0 it holds that PI,t = PII,t = Pt, AI,t = AII,t = At,

and mI,t−1 = mII,t−1 = 1.

We can thus do away with all subindices j. The state variables, At and

Pt, and all variables which are functions of these, now refer to both countries.

Note in particular that the survival rate in war, vt = λ/(λ+At), is the same

for both countries.

When there is no risk of confusion we shall from now on refer to this twin

pair of economies as one single economy.

Next we determine when the two countries will be at war or peace.

Proposition 2 (a) If

Rt =
Ptc

At

≤
(1 + χt)

(
1−

√
λ

λ+At

)
1 + χt −

√
λ

λ+At

, (11)

then two (pure-strategy) equilibria exist: SII,t = SI,t =A (war) and SII,t =

SI,t =N (peace).

(b) If (11) is reversed, then SII,t = SI,t =A (war) is the unique (pure-strategy)

equilibrium.

The proof is in Section A.4 of the Appendix.

Intuitively, the inequality (11) holds if resources are abundant (because Pt

is low, and/or At is high). Then a peaceful equilibrium is more likely to exist,

because the temptation for the government to try to conquer new territory

is low. Likewise, a high mortality rate in war (a low survival rate, vt =

λ/[λ + At]) makes war less likely, as it deters governments from aggression.

Also, a low territorial conquest shock, χt, implies that the governments are

less likely to end up in war.

Note that no country gains from war in equilibrium, since no land is

conquered. The reason the two governments still end up fighting these wars
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is that they cannot commit to non-aggression, even though it is socially

optimal. Only if technology is advanced enough, and/or population low

enough, does a peaceful equilibrium exist, by making a one-sided deviation

from a peaceful equilibrium not worthwhile.

We shall next assume that the two countries are able to coordinate on a

peaceful equilibrium whenever such exists, i.e., whenever (11) holds; when

(11) is reversed, war breaks out. Using (8) we can thus write wt as

wt = w(At, Pt, χt) =


λ

λ+At
= vt if Rt =

Ptc
At

>
(1+χt)

�
1−
q

λ
λ+At

�

1+χt−
q

λ
λ+At

,

1 if Rt =
Ptc
At

≤ (1+χt)
�
1−
q

λ
λ+At

�

1+χt−
q

λ
λ+At

.

(12)

Given that χt is uniformly distributed on [0, 1] it can also be shown that the

probability of war, denoted zt, is given by:

zt =


2− Rt

q
λ

λ+At

Rt−1+
q

λ
λ+At

if Rt =
Ptc
At

>
2
�
1−
q

λ
λ+At

�

2−
q

λ
λ+At

,

0 if Rt =
Ptc
At

≤ 2
�
1−
q

λ
λ+At

�

2−
q

λ
λ+At

.

(13)

4.5 Two-dimensional dynamics

4.5.1 Always war or always peace

Since the two countries’ state variables are identical in all periods (cf. Propo-

sition 1), we can write (6) and (7) as:

At+1 = Aα
t P

β
t ,

Pt+1 = nw(At, Pt, χt)
[
1− cPt

At

]2

Pt,
(14)

where w(·) is given by (12).

Given a sequence of values for χt, (14) and (12) define a two-dimensional

system of difference equations. We can gain a lot of insight about its quali-

tative properties by considering the behavior of an economy which are con-

stantly at war, or constantly at peace.

16



Proposition 3 Consider an economy which evolves according to (14).

(a) If the economy is always at peace, so that wt = w(At, Pt, χt) = 1 for all

t ≥ 0, then there exists a balanced growth path, where At, Pt, and ct = At/Pt

exhibit sustained growth.

(b) If the economy is always at war, so that wt = w(At, Pt, χt) = λ/(λ+At)

for all t ≥ 0, then there can be no sustained growth in either At, Pt, or

ct = At/Pt.

The proof is in Section A.4 of the Appendix.

Intuitively, technological progress requires growth in population, because

of the scale effect in the production of new technologies. Wars become in-

creasingly lethal as technology progresses, so permanent war rules out sus-

tained growth in population, making technological progress come to a halt.

Sustained growth in technology, population, and their ratio, thus requires

peace.

The dynamics are illustrated in the phase diagrams in Figure 3. In an

always-war economy (the upper panel) the locus along which population is

constant (Pt+1 = Pt) bends downward for high levels of technology, due to

technology’s effect on death rates in war; this rules out sustained growth in

either technology or population. The same locus in an always-peace economy

(the lower panel) is a straight line, enabling sustained growth.14

A detail worth noting is that the always-war dynamics are oscillatory,

making technology and population move in cycles. A high level of technology

implies lethal warfare, making population decline over time, thus reducing

technology through the scale effect; this in turn makes warfare less lethal,

allowing population levels to rise again.

Consider now an economy where the war probability is endogenous. While

in a state of war the economy may move along a trajectory towards the war

14As long as α + β > 1, the (At+1 = At)-locus has infinite slope around the origin,
implying that there also exists an unstable steady state, with an associated saddle path.
In Figure 3 this steady state can be thought of as located very close to the origin, and
not visible. In principle, an economy starting off below the saddle path contracts to the
origin; if it starts off above it converges either to the balanced growth path (in the always-
peace economy), or to the non-growing steady state (in an always-war economy). For the
parameters chosen in the simulations later this steady state plays no role.
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steady state, along which it experiences a decline in the probability of war.

Two factors drive this: as At increases in absolute terms war becomes more

costly; and as At increases relative to Pt (which happens if the economy

approaches its steady state from the “west” in the upper panel of Figure 3)

resource competition (Rt) declines. This, roughly, is how peace breaks out

endogenously in this model.

4.5.2 Endogenous war: a simulation

Next we let the state of war or peace be determined endogenously by (12). To

do this, we simulate an economy where χt is i.i.d. and uniformly distributed

on [0, 1]. Given a sequence of values for χt, exogenous parameters, and initial

conditions, we then update the state variables (Pt and At) period by period,

using (12) and (14).15 Note that, aside from the shocks, all variables which

evolve over time do so endogenously.

Figure 4 shows the result from a single simulation over 200 periods. (That

is, the paths are generated from one particular sequence of 200 values for χt.)

The transition from stagnation to growth is seen in Panel A, where technology

and population begin to grow at sustained rates and diverge. This leads to

reduced mortality from starvation, and starvation going to zero in the limit

(Panel B), as per-capita consumption begins to exhibit sustained growth

(Panel C).

Panel B also shows how peace becomes more frequent over time; note that

peace prevails when the war death rate [as given by 1− wt; see (12)] equals

zero. Over time, the war death rate first rises as technology improves, then

drops to zero as wars are no longer fought. This gives the path an inverse

U-shape.

Panel D provides an illustration of what drives this inverse U-shape. The

probability of war, as given by (13), declines, and the death rate in war if

15The parameter values are set as follows: α = 0.55, β = 0.65, λ = 250, c = 0.1, and
n = 1.2. Initial conditions are set to P0 = 1.5 and A0 = P

β/(1−α)
0 = 1.8. However,

the simulation here is only for illustration and these numbers are not important. As
discussed below, since fertility is exogenous, the present model will by definition fail to
generate realistic population growth rates (a demographic transition). Section 5.8 provides
a slightly more ambitious calibration exercise in a framework where fertility is endogenous.
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war breaks out, as given by 1 − vt = At/(λ + At), rises. Wars thus become

less frequent and more deadly over time, and are most deadly just before the

probability of war drops to zero.

Due to the random component of this model, all simulations are different

from one another (although they are qualitatively very similar). Figure 5

shows the time paths for consumption, time spent in resource competition,

and the war death rate, for three different economies. Note the differences

in timing: the first country to experience a growth takeoff is the first to

experience a decline in resource competition, and a peak in its war death

rate.

Figure 6 displays the result of a Monte Carlo simulation, where the paths

show averages across 500 runs. The features are qualitatively similar to

those of a single run, but the paths are smoother. The smoother war death

rate path reflects the different timing across countries of the peaks, and

subsequent drops, in war death rates.

Here we can also see an inversely U-shaped time path for the standard

deviation in war death rates across the 500 countries (Panel C). This fits with

the observed increase over time in the variance in war death rates shown in

Figure 2, and discussed in Section 3.3.

4.6 Discussion

The model presented thus far can generate several joint trends observed in

Western Europe over the last several centuries: a rise in the growth rate

of technology and living standards, together with a parallel decline in the

frequency, and a rise in the lethality, of war, as well as a rise in the variance

of war death rates.

Some details could be modelled differently, without necessarily altering

the main results. For example, an alternative approach may be to let some

elite in each country own all land: rising population density and falling mar-

ginal product of labor might increase the risk of a revolution, and to avoid

this the landed class might join with the landless in an effort to conquer land

from the other country.

The model also makes many brave abstractions. For example, it generates

19



technological progress by simply allowing population to enter the dynamic

function for technology. Such scale effects from population to technological

progress may have mattered at pre-industrial stages of development. How-

ever, in the world today skills, or human capital, are probably more important

inputs in the production of new technologies.

The model is also inconsistent with some widely documented facts about

how population tends to evolve in the course of economic development.

Rather than increasing monotonically, population growth has been inversely

U-shaped over time (Figure 7), the decline being driven by fertility reductions

as parents have substituted away from quantity and into quality (education)

of children. This is not captured in the setting presented thus far. Moreover,

many have argued that the increased levels of education that came with this

quality-quantity substitution generated further acceleration in technological

progress (Galor and Weil 1999, 2000). The model set up in the next section

addresses these shortcomings.

5 Model B: endogenous fertility

5.1 Structure

The model presented here shares many of the mechanisms at work in Model

A. The major difference is that agents now choose the number of children

to rear and how much human capital to invest in each child. To model this

we specify two new functions: a utility function defined over the number of

children a parent has and the children’s human capital levels; and a human

capital production function.

Moreover, in the spirit of Galor and Weil (2000), the human capital pro-

duction function allows technology to influence the return to investing in

children’s human capital.

We also assume a slightly different timing of mortality events. Death from

starvation or war occurs in adulthood, before agents have children. Moreover,

the starvation survival probability now equals q(cj,t), where the form for q(c)

is the same as in (2), i.e., q(c) = max{0, (c − c)/c}. Like in Model A, the

subindex j refers to the country (j =I,II). Consumption is given by (3), i.e.,
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cj,t = (rj,t/Rj,t)(mj,tAj,t/Pj,t). The rest of the notation is largely identical to

Model A: rj,t is the individual agent’s own time in resource competition; Rj,t

is the average level of rj,t across all agents in country j; Pj,t is the (pre-war

adult) population; mj,t is the size of country j’s (post-war) territory; and Aj,t

is country j’s level of technology.

Conditional on surviving war and starvation, adult agents rear nj,t chil-

dren, all of whom survive to become adults in the next period.

Agents’ preferences are defined over their number of children, nj,t, and

the human capital of each child, hj,t+1, as captured by this utility function:

Uj,t = hj,t+1n
γ
j,t, (15)

where γ ∈ (0, 1).

The probability that the agent lives to have children equals the product

of the probability of surviving starvation, q(cj,t), and the probability of sur-

viving war, vj,t (if there is a war). An agent who dies in war or starvation is

assigned utility zero.16 Thus, expected utility can be written

Et(Uj,t) =

{
vj,tq(cj,t)hj,t+1n

γ
j,t + [1− vj,tq(cj,t)]× 0 if war,

q(cj,t)hj,t+1n
γ
j,t + [1− q(cj,t)]× 0 if peace.

(16)

5.2 Human capital

Human capital in country j (j =I,II) of an agent who is adult in period t

is denoted by hj,t. Human capital transmitted to each child, hj,t+1, depends

on three factors: education time per child, ej,t; the parent’s own human

capital, hj,t; and an overall productivity factor, Γj,t. We use the following

specification:

hj,t+1 = Γj,tej,th
θ
j,t, (17)

where θ ∈ (0, 1).

The productivity factor, Γj,t, is assumed to have the following properties.

First, at a given amount of time spent educating each child, ej,t, educational

productivity is increasing in the number of children being educated. One

16Alternatively, we could let (15) define the difference in utility from being alive and
dead.
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interpretation is that students and pupils may be able to help each other;

another that having more students allows for specialization in teaching. Sec-

ond, Γj,t is assumed to be increasing in the level of technology, Aj,t. The idea

is that books, computers, laboratory technologies, the internet, and other

new technologies enhance the productivity of the human capital accumula-

tion process.

To get tractable analytical solutions we use this functional form:

Γj,t =
Bnj,t

F (Aj,t) + nj,t

, (18)

where B > 0, and F (A) is non-increasing in its argument. It will be seen

later that optimal fertility, nj,t, simply equals a constant times F (Aj,t). Intu-

itively, technological progress lowers F (Aj,t), which generates higher returns

to education. Agents respond by reducing fertility and instead invest in their

children’s human capital. This mechanism relates to Galor and Weil (2000),

and Lagerlöf (2006), with the difference that here improvements in the level

of technology, rather than its rate of change, generate the increase in the

return to education.17

Total time spent educating children equals the time the parent spends

outside of resource competition. The time endowment is set to unity so total

education time equals

ej,t =
1− rj,t

nj,t

(19)

per child. We use the convention that capital letters denote average levels of

variables, so that Hj,t+1 denotes the average hj,t+1 across agents in country

j (and, recall, Rj,t is average rj,t). Using (17), (18), and (19), we can then

write:

Hj,t+1 = B

[
1−Rj,t

F (Aj,t) + nj,t

]
Hθ

j,t, (20)

for j =I,II. Note that intense resource competition (a high Rj,t) is detrimental

to human capital accumulation.

17There is yet another interpretation of the productivity variable, Γj,t. One characteris-
tic of models in which children’s human capital is proportional to education time per child,
ej,t, is that parents can make human capital per child arbitrarily large by setting fertility,
nj,t, sufficiently small. Here this is impossible because the productivity of education goes
to zero as the number of children being educated goes to zero.
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5.3 Technology

Technological progress in country j depends on its levels of human capital

and population. We use the following specification:

Aj,t+1 = Aj,t[1 +D(Pj,t)Hj,t], (21)

for (i, j) ∈ {(I,II), (II,I)}. The factor D(Pj,t) captures a scale effect from

population size to efficiency in human capital accumulation, similar to Model

A, and is given by:

D(P ) = min{φP,D∗}, (22)

where D∗ > 0, and φ > 0. The idea is that increases in population levels

(or density) raise technological progress at early stages of development, and

only up to some maximum level. Thereafter increases in human capital alone

drive improvements in technological progress.

5.4 Utility maximization

In Section A.3 in the Appendix it is shown that optimal fertility, nj,t, is given

by:

nj,t =

(
γ

1− γ

)
F (Aj,t) ≡ n(Aj,t). (23)

We can thus choose F (A) to completely characterize the function n(A). The

following functional form is easy to work with:

n(Aj,t) = n+ (n− n)max

{
0,
Aj,t − Â

Aj,t

}
, (24)

where n < n, and Â is a threshold level of technology; while technology falls

below this threshold fertility is constant at n. That is, n(A) = n for A ≤ Â;

n′(A) < 0 for A > Â; and limA→∞ n(A) = n.18

Section A.3 of the Appendix also shows that the optimal choice of rj,t is

such that in equilibrium (where rj,t = Rj,t) time spent in resource competition

is given by (4).

18More precisely, we let F (A) = F + (F − F )max{0, (A − Â)/A}, for some exogenous

F and F and then define n = Fγ/(1 − γ) and n = Fγ/(1 − γ). Together with (23) this
gives (24).
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5.5 Six-dimensional dynamics

To find a dynamic equation for population, we first impose equilibrium (rj,t =

Rj,t) in (3). This gives consumption per agent, cj,t = mj,tAj,t/Pj,t, which gives

the survival rate from starvation (as long as cj,t > c) as

q(cj,t) =
cj,t − c

cj,t
= 1− cPj,t

mj,tAj,t

. (25)

The survival rate from war can be written as wj,t in (8). Recall that a

fraction wj,tq(ci,t) of the Pj,t adults survive war and starvation, and these

survivors have n(Ai,t) children each, so the population evolves according to

Pj,t+1 = wj,tq(cj,t)n(Aj,t)Pj,t. Using (25) this gives

Pj,t+1 = wj,tn(Aj,t)

(
1− cPj,t

mi,jAj,t

)
Pj,t. (26)

Human capital evolves according to (20). Recalling from (4) that 1−Rj,t =

cPj,t/(mj,tAj,t), and setting nj,t = n(Aj,t), this gives

Hj,t+1 =
γB

n(Aj,t)

[
1− cPj,t

mj,tAj,t

]
Hθ

j,t. (27)

Holding constant mj,t (j =I,II), (21), (26), and (27) constitute a state-

dependent six-dimensional dynamical system. Next, like in Model A, we

shall assume that the two countries are identical in the initial period. Then

they can be seen to be identical also in all subsequent periods, making the

dynamics three-dimensional.

5.6 War and peace

Like in Model A, the governments can be aggressive in an attempt to increase

their territories, mj,t. The next step is thus to find the payoffs to each govern-

ment from being aggressive, and non-aggressive. The governments’ objective

functions are here their citizens’ expected utility. Recall the notation from

Model A: Sj,t =A if country j’s government is aggressive, and Sj,t =N if it

is non-aggressive (j =I,II). Peace prevails if SI,t = SII,t =N; else war war
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breaks out and a fraction 1− vj,t of the agents in country j are killed, where

vj,t is given in (8).

The payoffs to the government in one country of choosing A or N can

now be seen to be identical to those of Model A, up to a constant.

Proposition 4 Expected utility in equilibrium of an agent in country j can

be written

Et(Uj,t) = πj,t

[
γBHθ

j,t

n(Aj,t)

]
, (28)

where πj,t is given by (10).

The proof is in Section A.4 of the Appendix.

The factor in square brackets in (28) is taken as given by the government

maximizing Et(Uj,t) in period t, so the governments choose Sj,t to simply

maximize πj,t, making the outcomes identical to those in Model A. To see

this, first we add this assumption.

Assumption 3 HI,0 = HII,0.

We can now state the following, also proven in Section A.4 of the Appen-

dix.

Proposition 5 Under Assumptions 2 and 3, and considering only pure-

strategy equilibria, in all periods t ≥ 0 it holds that PI,t = PII,t = Pt,

AI,t = AII,t = At, HI,t = HII,t = Ht, and mI,t−1 = mII,t−1 = 1.

We can thus do away with all subindices j. Moreover, since the payoffs are

identical to those in (10) (up to a factor which the players take as constant)

Proposition 2 applies: a peaceful equilibrium exists if (11) holds; else, only a

war equilibrium exists (assuming pure strategies). Repeating the assumption

of Model A, that the two countries coordinate on the peaceful equilibrium

whenever that exists, the survival rate from war, wt, can be written as in

(12).
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5.7 Three-dimensional dynamics

Suppressing the country index j in (21), (26), and (27), and setting mj,t = 1,

we can write the resulting three-dimensional dynamical system as:

Pt+1 = w(At, Pt, χt)n(At)
[
1− cPt

At

]
Pt,

At+1 = At[1 +D(Pt)Ht],

Ht+1 = γB
n(At)

[
1− cPt

At

]
Hθ

t ,

(29)

where w(·) is given by (12), n(A) by (24), and D(P ) by (22).

Given a sequence of values for χt and initial conditions, (29) fully deter-

mines the evolution of the economy. Since the system is three-dimensional

it is difficult to illustrate in a two-dimensional phase diagram. However, if

we impose the following assumption to ensure that a peaceful economy can

exhibit sustained growth, the system can be seen to share some qualitative

features with Model A.

Assumption 4 D∗ > (n− 1)
(

n
Bγ

)1/(1−θ)

.

We can now state the following, which is proven in Section A.4 of the

Appendix.

Proposition 6 Consider an economy which evolves according to (29), where

D(P ) is given by (22), and n(A) is given by (24), where n > 1. Under

Assumption 4, the following holds.

(a) If the economy is always at peace, so that wt = w(At, Pt, χt) = 1 for all

t ≥ 0, then there exists a balanced growth path, where At, Pt, and ct = At/Pt

exhibit sustained growth.

(b) If the economy is always at war, so that wt = w(At, Pt, χt) = λ/(λ+At)

for all t ≥ 0, then there can be no sustained growth in At or Pt.

The intuition is similar to that behind Proposition 3 in Model A. Perma-

nent war rules out sustained growth because wars become increasingly lethal
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as technology progresses, in turn ruling out sustained population growth.19

Sustained growth in both technology, population, and per-capita con-

sumption, thus requires peace. Moreover, recall that Proposition 2 applies,

so peace breaks out endogenously as the result technological progress. As in

Model A, governments are less inclined to fight more lethal wars. A novel

ingredient in this model compared to Model A is that technology, after reach-

ing the threshold Â, drives a fertility decline, and a rise in human capital

levels. This generates a spurt in technological progress, and thus reduces

population pressure and further mitigates the Malthusian war motive.

5.7.1 Dynamics in the Malthusian regime

To see the intuition behind the dynamics we may think of an underdeveloped

economy in which the level of technology is low and changes slowly over time

[as will be the case while human capital and/or population levels are low;

see (29)]. The behavior of this economy may be approximated by a holding

technology fixed at some level A < Â. Thus, fertility is constant at n; see

(24). For the moment, hold the war survival rate fixed at some level w (which

may be a function of A or equal to one). The three-dimensional system in

(29) then boils down to the following two-dimensional system:

Pt+1 = wn
[
1− cPt

A

]
Pt,

Ht+1 = γB
n

[
1− cPt

A

]
Hθ

t .
(30)

Some properties of the system in (30) can be summarized as follows.

Proposition 7 Consider an economy which evolves according to (30).

(a) If wn > 1, then there exists a steady-state equilibrium, Pt = P ∗ and

Ht = H∗, where

P ∗ = A
c

(
1− 1

wn

)
,

H∗ =
(

γB
wn2

) 1
1−θ .

(31)

19Different from Model A, however, here technology cannot regress. Rather, with per-
manent war, population contracts indefinitely, so that the rate of technology growth goes
to zero, and technology converges to a constant level. With constant technology and
shrinking population, per-capita consumption, At/Pt, actually exhibits sustained growth
(although not of the type we observe empirically).
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(b) If the economy is always at peace, so that w = 1 for all t ≥ 0, then H∗

does not depend on A, and P ∗ is strictly increasing in A.

(c) If the economy is always at war, so that w = λ/(λ + A) for all t ≥ 0,

then both H∗ and P ∗ are strictly increasing in A.

Intuitively, a rise in technology (A) leads to higher survival from starva-

tion, but also lower survival from war (lower w). Thus, with permanent war

steady-state population increases less than proportionally to technology. A

higher technology-population ratio leads to less resource competition (lower

Rt), and thus to more human capital investment.

Consider now what happens if technology evolves endogenously. Then an

initial rise in technology raises the level of population and (under permanent

war) human capital, which in turn implies further technological progress.

One may also illustrate (30) in a phase diagram, to see that the steady-

state equilibrium in (31) appears globally stable. However, discrete systems

may nevertheless be oscillatory and/or diverge globally. (Note, in particular,

that if population exceeds A/c it becomes extinct in the next period.) Sec-

tion 5.8 examines the global behavior of the system in (29) for a reasonable

quantitative example, where the outbreak of war is determined endogenously.

5.8 Quantitative analysis

The most straightforward way to illustrate the qualitative behavior of the

three-dimensional system in (29) is to simulate it. All functions are given

specific forms already, as characterized by 10 parameters: B, γ, θ, c, n, n, Â,

λ, D∗, and φ. Because the model is set up in a stylized manner it is hard to

pin down an empirically realistic value for every parameter. However, there

is some logic to how we have chosen most of them, as described below.

5.8.1 The length of a period

First, we let each period correspond to 5 years. The two-period overlapping-

generations structure might suggest that each period be about 20 years.

However, 5 years is closer to the duration of e.g. WWI and WWII, allowing

28



longer wars to be interpreted as several periods of subsequent war. Moreover,

some of the European 20th-century events that the model is designed to

explain lasted for only about half a century, so it is desirable that these

phases correspond to more than just a couple of periods in the model.

To translate each period to years A.D. we let the war death rate peak in

1945.

5.8.2 Parameter values

Table 1 lists the parameter values chosen and summarizes what functions

they originate from.

We set n = 1.4, which implies an upper bound for the population growth

rate of 40% over 5 years, or about 8% per year. Note that population will

never grow at that rate. Rather, this corresponds to a hypothetical growth

rate during the Malthusian phase (i.e., while At < Â), if mortality from

starvation had been zero [q(ct) = 1], and if no agent died from war.20

We set n = 1.015, which corresponds to a population growth rate on the

balanced growth path of 1.5% per period, or about 0.3% per year.

The level of subsistence consumption, c, is set to 0.025. This value is

chosen quite arbitrary, but given how we set other parameters values, it is

low enough that the model can generate paths where ct = At/Pt exceeds c

in every period, thus ensuring that the population never dies out.

The threshold level of technology above which fertility starts to decline,

Â, is set arbitrarily to 10.

Given Â = 10, we then set λ so that λ/(λ+ Â) equals 0.05. This implies

a war death rate of about 5% at the onset of the demographic transition.

The value for θ is set to 0.2. This means that a 1% increase in the human

capital of the parent (holding constant education) raises the child’s human

capital by 0.2%. This is consistent with Solon (2002), who reports estimates

of the elasticity of a son’s earnings with respect to the father’s earnings,

ranging from 0.11 to 0.42.

This leaves us with four parameters: B, γ, D∗, and φ. However, because
only the product Bγ plays any role in the dynamics (holding fixed n and n),

20This can also be interpreted as 4 children per agent over a 5-year period, corresponding
to 8 children per woman in a two-sex setting, or 1.6 children per woman and year.
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we can normalize B to 1, leaving us with only three parameters to pin down:

γ, D∗, and φ. We choose these to make the model fit the following targets:

First, the per-capita consumption growth rate on the balanced growth

path is set to be close to the growth rate in GDP per capita in the developed

world today, about 2.5% per year.

Second, the peak of the population growth rate in the model is fit to

the maximum annual population growth rate in Western Europe. This was

around 0.75% per annum in the period 1870-1913 (see Figure 7), but probably

somewhat higher if we were to include those who migrated during this era;

we take 1% to be a reasonable target.

Third, the decline in fertility (which, recall, occurs when At reaches Â) is

set to begin around 1900, given that the peak in war deaths was set to 1945.

Although the timing varies across countries it fits roughly with the actual

decline in fertility in most of Western Europe.

Fourth, we set the scale effect from population on technological progress,

D(Pt), to reach its maximum in the same period as the quality-quantity shift

sets in, i.e., when At reaches Â.

We use the following algorithm to fit these targets. We pick some first

guess for γ and φ. We then set D∗ so that the scale effect from population

on technological progress reaches its maximum when At reaches Â.
21 Given

this choice of D∗ we can then re-adjust φ and γ so that the decline in fertility

occurs around 1900, population growth peaks around 1%, and the per-capita

consumption growth rate is about 2.5% on the balanced growth path.22 The

parameter values listed in Table 1 get us close to these targets.

21Since the path for At is random, we run the model 500 times, calculating for each run
what value φPt takes when At first exceeds Â. We then set D∗ to the average of these
values across all 500 runs.

22Per-capita consumption equals ct = At/Pt so we can write the gross growth rate
of ct as ct+1/ct = (At+1/At)/(Pt+1/Pt). On the balanced growth path mortality from
war and starvation approaches zero, so Pt+1/Pt = n. Setting n(At) = n and Rt =
cPt/At = 0 in (29), the (non-growing) level of human capital on the balanced growth path
equals (Bγ/n)1/(1−θ). Setting the scale effect from population to its maximum, D∗, gives
At+1/At = 1+D∗(Bγ/n)1/(1−θ). Per-capita consumption growth on the balanced growth
path can thus be written ct+1/ct = [1 +D∗(Bγ/n)1/(1−θ)]/n.
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5.8.3 Initial conditions

We set initial technology, A0, equal to 10% of Â. Initial levels of population

and human capital, P0 and H0, are set to the hypothetical steady state

levels they would converge to if technology stayed constant at A0, and the

economy remained in a state of permanent war [i.e., setting w0 = λ/(λ+A0)].

Analogous to (31) this gives P0 = (A0/c) [1− (λ+ A0) /(nλ)], and H0 =

[Bγ (λ+ A0) /(n
2λ)]1/(1−θ).

5.8.4 Simulation results

Having chosen parameter values and initial conditions the simulation algo-

rithm is the same as for Model A. First, we generate a series of shocks, χt,

from a uniform distribution on [0, 1]. We then update the state variables

(Ht, Pt, and At) period by period, using the difference equations in (29).

Figures 8 and 9 show the results from a Monte Carlo simulation where

we run the model 500 times. Each run may represent one country (or, to be

precise, one pair of identical countries). The paths show the averages of the

different variables across the 500 runs. We display the results from 1600 to

2050, where (as described above) the average war death rate is set to peak

in 1945.

Panel A in Figure 8 shows the paths for the levels of technology and pop-

ulation. These grow throughout but around 1900 they diverge as population

levels out, due to the arrival of the demographic transition (as At reaches Â).

Simultaneously, per-capita consumption starts to grow at a faster rate, and

human capital starts to rise, converging to a new, higher level.

Panel B in Figure 8 shows the endogenously evolving paths for the death

rates from war, 1−wt, and starvation, 1−q(ct). Whereas war mortality shows

an inversely U-shaped pattern, non-war mortality is declining monotonically,

but faster when growth in per-capita consumption sets in. Both these trends

seem consistent with the data. (Recall that the paths show the means across

500 runs; war deaths in each individual run drop to zero when the probability

of war does.)

Panel C in Figure 8 shows the two sides of what we usually refer to as the

demographic transition: a decline in mortality, followed by a lagged decline
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in fertility. The decline in fertility begins when At reaches Â.

Panel D shows the probability of being at war for the mean country, as

calculated by applying (13) to the mean levels of At and Pt, and the fraction

of all 500 countries actually being at war in any period.23 Both are declining,

which fits with the centuries-long decline in the frequency of war in Figure

1. Panel D also shows the incline in the deadliness of war, as measured by

1− vt = At/(λ+ At). This also fits with the stylized facts described earlier.

Figure 9 shows the time paths for the annual percentage growth rates of

population and per-capita consumption, and the hypothetical no-war pop-

ulation growth path (derived by setting wt = 1).24 The latter is inversely

U-shaped, whereas actual population growth follows a path which can be de-

scribed as inversely U-shaped with a “dent” around the peak, similar to that

in Figure 7. This pattern is driven by accelerating technological progress,

which raises living standards, thus making non-war deaths decline, and at

the same time makes wars more deadly.

The path for per-capita consumption growth in Figure 9 follows largely

the same pattern as that of per-capita GDP growth in Western Europe shown

in Figure 7. A slow and steady rise in the per-capita consumption growth

rate is followed by a spurt, due to faster technological progress at the on-

set of the demographic transition. One detail is inconsistent with the facts:

since consumption here equals the technology-population ratio, per-capita

consumption growth rises in the most war-intense phase during which pop-

ulation growth drops. This need not be true in a model where wars destroy

physical capital.

23The two lines are not identical, because all countries have different levels of At and
Pt in any period. When the probability of war reaches zero for the mean country some
countries which are slower to develop still fight wars.

24The annual population growth rate is calculated as 100 × {[wtntq(ct)]1/5 − 1}. The
hypothetical population growth rate if wars were eliminated is calculated as 100 ×
{[ntq(ct)]1/5 − 1}. (Recall that each period is 5 years.)
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6 Conclusions

We have presented two version of a unified growth model in which economies

take off endogenously from stagnation to sustained growth in living stan-

dards, and from war to peace. At the micro level agents compete for food

for their survival. When resources are scarce agents allocate more of their

time to competing over resources. Land is in fixed supply, so higher popu-

lation leads to scarcer resources and more resource competition. However,

improvements in technology mitigates resource scarcity.

Governments start wars aiming to increase their country’s territories, and

thus their citizens’ starvation survival probabilities, but weigh this against

agents being killed in war. Governments in countries where resources are

scarce, and thus resource competition intense, are more inclined to start

wars.

Technological progress makes war less frequent by reducing resource scarcity,

and thus the desire for land conquest. It also makes wars more deadly, and

thus governments less prone to fight them. In the transition to a peaceful bal-

anced growth path where per-capita consumption grows at a sustained rate,

an economy can pass a phase of very high war death rates. This may capture

what happened in Western Europe in the first half of the 20th century.

We also allow for a random element in the decision to engage in war.

Among countries which are initially identical, those hit by worse war shocks

tend to take off later from stagnation to growth. Across countries the vari-

ance in war death rates displays an initial rise as country after country passes

through the most lethal war phase of development, before becoming com-

pletely peaceful. This pattern also seems consistent with the data.

An extended setting, where fertility is endogenous, can also replicate

a demographic transition, i.e., a decline in fertility following a decline in

mortality. The framework reproduces a population growth path which is

inversely U-shaped, but with a “dent” around the peak, consistent with the

Western European experience around the time of the two world wars; cf.

Figures 7 and 9.

We have of course abstracted from many factors which we know matter

for the likelihood of war: institutions is one example, in particular democ-

33



racy.25 Some wars being fought today (e.g., in Iraq and Afghanistan, not

included in the data shown here) have lower death rates than earlier wars

(at least when measured by battle deaths as a fraction of the total popu-

lations of the United States and/or Europe). However, these wars may be

exceptions proving the rule. History’s deadliest wars (like WWI and WWII)

were fought between the technological leaders at the time, and it was new

technologies that made those wars so deadly. According to our theory, the

technological leaders today do not fight wars against one another, because

the death rates would be too high, and technologies have advanced enough

to make land and resource scarcity irrelevant. (Of course, one may think of

many other, often related, explanations too.) In fact, we only model wars

between technologically symmetric countries; strictly speaking, we are silent

about e.g. guerilla wars. However, consistent with our assumptions, it seems

that if wars between technologically advanced nations were fought today

death rates could become very high indeed.26

A Appendix

A.1 Data

A.1.1 The frequency of war

Figure 1 shows two indices over the number of ongoing wars. These are

constructed using two different lists of wars, with both a start year and an

end year for each war. For each list, we simply calculate the total number

of wars that went on in each year, and then average over decades. Next we

describe these two lists of wars.

25See e.g. Easterly et al. (2006) for a discussion. However, some have also argued
that particularly young and emerging democracies need not always be more peaceful than
dictatorships; see Mansfield and Snyder (2005) and Baliga et al. (2006).

26One could take this argument one step further. In our model, wars are started because
the conquest of land can potentially reduce death from starvation, making limited war
deaths tolerable to the governments who start them. Today, troop deaths in Iraq and
Afghanistan are tolerated because (some believe) these can reduce expected death risks
from terrorist attacks.
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Levy (1983) The Levy (1983) data set consists of 119 wars, which start

and end between 1495 and 1975. These are listed in Table A.1. The list is

restricted to wars which involve at least one Great Power (as defined below),

and excludes “civil wars, unless they become internationalized through the

intervention of an external state; and [...] imperial or colonial wars, unless

they expand through the intervention of another state” (Levy 1983, p. 51).

The Great Power dummy in Table A.1 indicates which wars involved two

Great Powers, or more.

Levy (1983, Table 2.1) defines the following nations/empires as Great

Powers in the time periods indicated in parentheses: France (1495-1975);

England/Great Britain (1495-1975); Austrian Habsburgs/Austria (1495-1519,

1556-1918); Spain (1495-1519, 1556-1808); Ottoman Empire (1495-1699);

United Habsburgs (1519-1556); The Netherlands (1609-1713); Sweden (1609-

1713); Russia/Soviet Union (1721-1975); Prussia/Germany/FRG (1740-1975);

Italy (1861-1975); United States (1898-1975); Japan (1905-1945); China

(1949-1905).

For each war, Levy (1983, Table 4.1) provides data on e.g. start year,

end year, duration, severity (number of battle deaths), and intensity (battle

deaths in proportion to population).

Intensity is computed as the number of battle deaths per million European

population. The motivation for using European population is that “[t]he

Great Power system has historically been European-based, and for most of

the temporal span of the system national population growth rates have not

deviated significantly from that of Europe as a whole” (Levy 1983, p. 87).

From 1500 to 1913 the population of Western Europe stayed within a bound

of 13.1% and 14.7% of world population; the corresponding numbers for

Eastern Europe are 3.1% and 4.4% (Maddison 2003, Table 8a). Thus, the

time trends discussed here should not be sensitive to using world population

instead.

The death rates shown in Figure 2 are calculated as follows. Let D

be Levy’s (1983) measure of intensity (battle deaths per million European

population), and L the duration of the war (in years). Then we use this
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measure of the annual death rate:

ln

{(
1 +

D

1, 000, 000

) 1
L

}
.

That is, D/1, 000, 000 is the percentage death rate per capita over the whole

war. For example, WWI lasted for 4.3 years and battle deaths were 57,616

per million European population (L = 4.3, D = 57, 616). The above formula

then gives 0.013027. Note that WWI and WWII would be outliers in Figure

2 if we were to show them.

Figure 2 refers to wars involving two, or more, Great Powers, as indicated

by the dummy variable in Table A.1.

Wikipedia The Wikipedia list of wars is copied from the following Web

site:

http://en.wikipedia.org/wiki/List of conflicts in Europe

This list starts earlier than the Levy (1983) data. Disregarding all wars

from the Greek and Roman empires 500-71 B.C., and the Norman conquest

in 1066, leaves us with a list of 64 wars, starting in 1337 with the Hundred

Years’ War.

We then subdivide some of these wars into shorter wars. For example, the

Hundred Years’ War (1337-1453) is divided into the Edwardian War (1337-

1360), the Caroline War (1369-1389), and the Lancastrian War (1415-1429).

The subdivisions for the Eighty Years’ War and the Italian Independence

Wars are detailed in Table A.2.

Finally, by following the links provided on the Wikipedia Web site (and

using some common sense), we selected those wars which played out in West-

ern Europe. How this selection was done is shown by the Western Europe

dummy in Table A.2.

A.2 Optimality conditions in Model A

The agent chooses rj,t to maximize q(cj,t)(1−rj,t), subject to (3). The solution

is given by

g(cj,t)
∂cj,t
∂rj,t

(1− rj,t) = g(cj,t)
1− rj,t

rj,t

= 1, (A1)
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where g(c) is the elasticity of q(c) with respect to c, which from (2) becomes

g(c) =
q′(c)c
q(c)

=
c

c− c
. (A2)

In equilibrium, where Rj,t = rj,t and cj,t = (mj,tAj,t)/Pj,t, (A1) can be written

g (cj,t)

(
1−Rj,t

Rj,t

)
= g

(
mj,tAj,t

Pj,t

) (
1−Rj,t

Rj,t

)
= 1. (A3)

Using (A2) and (A3) gives (4). More generally, (A3) demonstrates that Rj,t

is decreasing (increasing) in cj,t if g(cj,t) is decreasing (increasing) in cj,t,

which is the result of Grossman and Mendoza (2003).

A.3 Optimality conditions in Model B

Agents maximize utility in (16) subject to (18), (17), and (19). Note that

the survival rate of war (if there is a war) is simply given by a constant, vj,t,

in front of the objective function in peace. Since vj,t and the probability of

war are taken as given by each agent, the utility maximization problem is

the same in both war or peace, and can be written:

max
(rj,t,nj,t)∈[0,1]×R+

q

(
rj,tmj,tAj,t

Rj,tPj,t

)
B(1− rj,t)h

θ
j,tn

γ
j,t

F (Aj,t) + nj,t

, (A4)

where q(·) is given in (2). The first-order condition for fertility can be written

q(cj,t)B(1− rj,t)

{
γnγ−1

j,t [F (Aj,t) + nj,t]− nγ
j,t

[F (Aj,t) + nj,t]
2

}
hθ

j,t = 0, (A5)

which gives (24).

Disregarding factors in (A4) which do not involve rj,t, the optimal choice

of rj,t is given by maximizing q(cj,t)(1−rj,t), subject to cj,t = (rj,tmj,tAj,t)/(Rj,tPj,t).

As shown in Section A.2 above, this gives (4).

A.4 Proofs

Proof of Proposition 1: From (10) it is seen that πA,A
j,t > πN,A

j,t always holds,

since vj,t < 1. Thus, non-aggression is never an optimal response if the
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other country is aggressive, and SII,t �= SI,t cannot hold in any pure-strategy

equilibrium. It follows from (9) that no territory will be redistributed in

equilibrium, so mI,t = mII,t = 1 for all t ≥ 0. The dynamic equations in (7)

and (6) then give the same Pj,t+1 and Aj,t+1 in both economies, j =I,II. ‖

Proof of Proposition 2: First set PI,t = PII,t = Pt, AI,t = AII,t = At, and

mI,t−1 = mII,t−1 = 1 in (10). Consider now part (a). For SII,t = SI,t =A to

be an equilibrium, it must hold that no country wants to be non-aggressive

if the other is aggressive: πA,A
I,t ≥ πN,A

I,t and πA,A
II,t ≥ πN,A

II,t . Using (10), these

inequalities become identical and can be written vt [1− cPt/{(1− χt)At}]2 ≤
[1− cPt/At]

2. This always holds, since vt ≤ 1, and χt ∈ [0, 1]. Thus, SII,t =

SI,t =A is always an equilibrium. Next consider part (b). For SII,t = SI,t =N

to be an equilibrium it must hold that no country wants to make a one-sided

deviation from mutual non-aggression: πN,N
I,t ≥ πA,N

I,t and πN,N
II,t ≥ πA,N

II,t . Using

(10), these inequalities become identical and can be written vt [1− cPt/At]
2 ≥

[1− cPt/{(1 + χt)At}]2, which gives (11); equivalently, peace cannot be an

equilibrium if (11) is reversed. Part (a) showed that a war equilibrium always

exists. Thus, if (11) holds both war and peace equilibria exist. ‖

Proof of Proposition 3: To prove (a), first conjecture that a balanced

growth path (BGP) exists where At/Pt exhibits sustained growth. On that

BGP, Pt/At must be zero. It then follows from (14), n > 1, and wt = 1 that

Pt+1/Pt = n > 1. Let g∗ denote the (gross) growth rate of At on the BGP,

i.e., At+1/At = Aα−1
t P β

t = g∗. On the BGP it must hold that Aα−1
t+1 P

β
t+1 =

g∗, so (At+1/At)
α−1(Pt+1/Pt)

β = 1, or g∗α−1nβ = 1. It follows that g∗ =

nβ/(1−α) > n, where the inequality follows from n > 1, and Assumption

1. Thus, At+1/At = g∗ > Pt+1/Pt = n, verifying that At/Pt indeed exhibits

sustained growth on this BGP. The proof of (b) is done through contradiction:

if At were to exhibit sustained growth, wt = λ/(λ+At) would approach zero,

ruling out sustained growth in Pt, which from (14) also rules out sustained

growth in At, and At/Pt. ‖

Proof of Proposition 4: Expected utility in equilibrium is given by setting

rj,t = Rj,t, hj,t = Hj,t, and hj,t+1 = Hj,t+1 in (16). Using (20), (24), (25), and

recalling from (4) that 1−Rj,t = 1− cPj,t/(mj,tAj,t), we can write (16) as in
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(28), where

πj,t =

 vj,t

[
1− cPj,t

mj,tAj,t

]2

if war,[
1− cPj,t

mj,tAj,t

]2

if peace.
(A6)

Recall that war prevails unless SI,t = SII,t =N. Using (9) to substitute for

updated territory, mj,t, in (A6), gives (10). ‖

Proof of Proposition 5: From (10) it is seen that πA,A
j,t > πN,A

j,t always

holds, since vj,t < 1. Thus, non-aggression is never an optimal response if the

other country is aggressive, and SII,t �= SI,t cannot hold in any pure-strategy

equilibrium. It follows from (9) that no territory will be redistributed in

equilibrium, so mI,t = mII,t = 1 for all t ≥ 0. The dynamic equations in (21),

(26), and (27) then give the same Pj,t+1, Hj,t+1, and Aj,t+1 in both economies,

j =I,II. ‖

Proof of Proposition 6: To prove (a), first conjecture that a balanced

growth path (BGP) exists where At and At/Pt exhibit sustained growth.

Thus, n(At) goes to n > 1, and Ht to (Bγ/n)1−θ, and Pt exhibits sustained

growth at gross rate n > 1. This means that D(Pt) equals D
∗, and At grows

at gross rate 1+D∗(Bγ/n)1−θ, which under Assumption 4 exceeds the gross

population growth rate, n. The proof of (b) is done through contradiction: if

At were to exhibit sustained growth, wt = λ/(λ + At) would approach zero,

implying that Pt goes to zero. Thus, using (22), D(Pt) = φPt would go to

zero, ruling out sustained growth in At. ‖

Proof of Proposition 7: Part (a) follows from setting Pt+1 = Pt = P ∗

and Ht+1 = Ht = H∗; then (30) gives (31). Part (b) follows from simply

differentiating H∗ and P ∗ with respect to A, holding w = 1. To prove Part

(c), we first note that H∗ depends on A only through w, which is decreasing

in A. To see that P ∗ are strictly increasing in A, use w = λ/(λ + A) and

(31) to derive that:

∂P ∗
∂A

= 1
c

(
1− 1

wn

)
+ A

cn
∂w
∂A

1
w2

= A
c

(
1− λ+A

λn

)
− A

c

(
1

λn

)
= n−1

cn
> 0,

(A7)

where we have used ∂w/∂A = −λ/(λ+ A)2. ‖
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Parameter Value From function

c 0.025
Starvation survival

function in (2)

B

θ

1

0.2

Human capital

production function in

(17) and (18)

n

n

Â

1.4

1.015

10

Fertility function in (24)

φ

D∗
0.010

0.813

Technological updating

in (21) or (22)

γ 0.250 Utility function in (15)

λ 190
War survival

function in (12)

Table 1: Parameter values in Model B.
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ID Name of war Start End Duration Intensity Great Powers dummy
1 War of the League of Venice 1495 1497 2 119 1
2 Polish-Turkish War 1497 1498 1 45 0
3 Venetian-Turkish War 1499 1503 4 60 0
4 First Milanese War 1499 1500 1 29 0
5 Neapolitan War 1504 1501 3 269 1
6 War of the Cambrian League 1508 1509 1 145 0
7 War of the Holy League 1511 1514 3 261 1
8 Austro-Turkish War 1512 1519 7 343 1
9 Scottish War 1513 1515 2 57 0

10 Second Milanese War 1515 1515 0.5 43 1
11 First War of Charles V 1521 1526 5 420 1
12 Ottoman War 1521 1531 10 958 1
13 Scottish War 1522 1523 1 41 0
14 Second War of Charles V 1526 1529 3 249 1
15 Ottoman War 1532 1535 3 384 1
16 Scottish War 1532 1534 2 55 0
17 Third War of Charles V 1536 1538 2 438 1
18 Ottoman War 1537 1547 10 1329 1
19 Scottish War 1542 1550 8 176 0
20 Fourth War of Charles V 1542 1544 2 629 1
21 Siege of Boulogne 1544 1546 2 107 1
22 Arundel’s Rebellion 1549 1550 1 79 1
23 Ottoman War 1551 1556 5 578 1
24 Fifth War of Charles V 1552 1556 4 668 1
25 Austro-Turkish War 1556 1562 6 676 1
26 Franco-Spanish War 1556 1559 3 316 1
27 Scottish War 1559 1560 1 78 1
28 Spanish-Turkish War 1559 1564 5 310 1
29 First Huguenot War 1562 1564 2 77 1
30 Austro-Turkish War 1565 1568 3 306 0
31 Spanish Turkish War 1569 1580 11 608 1
32 Austro-Turkish War 1576 1583 7 600 0
33 Spanish-Portuguese War 1579 1581 2 50 0
34 Polish-Turkish War 1583 1590 7 210 0
35 War of the Armada 1585 1604 19 588 1
36 Austro-Polish War 1587 1588 1 49 0
37 War of Three Henries 1589 1598 9 195 1
38 Austro-Turkish War 1593 1606 13 1086 1
39 Franco-Savoian War 1600 1601 1 24 0
40 Spanish-Turkish War 1610 1614 4 175 1
41 Austro-Venetian War 1615 1618 3 70 0
42 Spanish-Savoian War 1615 1617 2 23 0
43 Spanish-Venetian War 1617 1621 4 58 0
44 Spanish-Turkish War 1618 1619 1 69 1
45 Polish-Turkish War 1618 1621 3 173 0
46 Thirty Years’ War - Bohemian 1618 1625 7 3535 1
47 Thirty Years’ War - Danish 1625 1630 5 3432 1
48 Thirty Years’ War - Swedish 1630 1635 5 3568 1
49 Thirty Years’ War - Swedish-French 1635 1648 13 12933 1
50 Spanish-Protuguese War 1642 1668 26 882 0

Table A.1: The Levy war data



51 Turkish-Venetian War 1645 1664 19 791 0
52 Franco-Spanish War 1648 1659 11 1187 1
53 Scottish War 1650 1651 1 22 0
54 Anglo-Dutch Naval War 1652 1655 3 282 0
55 Great Northern War 1654 1660 6 238 1
56 English-Spanish War 1656 1659 3 161 1
57 Dutch-Portuguese War 1657 1661 4 43 0
58 Ottoman War 1657 1664 7 1170 1
59 Sweden-Bremen War 1665 1666 1 11 0
60 Anglo-Dutch Naval War 1665 1667 2 392 1
61 Devolutionary War 1667 1668 1 42 1
62 Dutch War of Louis XIV 1672 1678 6 3580 1
63 Turkish-Polish War 1672 1676 4 52 0
64 Russo-Turkish War 1677 1681 4 125 0
65 Ottoman War 1682 1699 17 3954 1
66 Franco-Spanish War 1683 1684 1 51 1
67 War of the League of Augsburg 1688 1697 9 6939 1
68 Second Northern War 1700 1721 21 640 1
69 War of Spanish Succession 1701 1713 12 12490 1
70 Ottoman War 1716 1718 2 98 0
71 War of the Quadruple Alliance 1718 1720 2 245 1
72 Britsh-Spanish War 1726 1729 3 144 1
73 War of the Polish Succession 1733 1738 5 836 1
74 Ottoman War 1736 1739 3 359 0
75 War of the Austrian Succession 1739 1748 9 3379 1
76 Russo-Swedish War 1741 1743 2 94 0
77 Seven Years War 1755 1763 8 9118 1
78 Russo-Turkish War 1768 1774 6 127 0
79 Confederation of Bar 1768 1772 4 149 0
80 War of the Bavarian Succession 1778 1779 1 3 1
81 War of the American Revolution 1778 1784 6 304 1
82 Ottoman War 1787 1792 5 1685 0
83 Russo-Swedish War 1788 1790 2 26 0
84 French Revolutionary Wars 1792 1802 10 5816 1
85 Napoleonic Wars 1803 1815 12 16112 1
86 Russo-Turkish War 1806 1812 6 388 0
87 Russo-Swedish War 1808 1809 1.5 51 0
88 War of 1812 1812 1814 2.5 34 0
89 Neapolitan War 1815 1815 0.2 17 0
90 Franco-Spanish War 1823 1823 0.9 3 0
91 Navarino Bay 1827 1827 0.1 2 0
92 Russo-Turkish War 1828 1829 1.4 415 0
93 Austro-Sardinian War 1848 1849 1 45 0
94 First Schleswig-Holstein War 1849 1849 1.2 20 0
95 Roman Republic War 1849 1849 0.2 4 0
96 Crimean War 1853 1856 2.4 1743 1
97 Anglo-Persian War 1856 1857 0.4 4 0
98 War of Italian Unification 1859 1859 0.2 159 1
99 Franco-Mexican War 1862 1867 4.8 64 0

100 Second Schleswig-Holstein War 1864 1864 0.5 12 0
101 Austro-Prussian War 1866 1866 0.1 270 1

Table A.1 continued



102 Franco Prussian War 1870 1871 0.6 1415 1
103 Russo-Turkish War 1877 1878 0.7 935 0
104 Sino-French War 1884 1885 1 16 0
105 Russo-Japanese War 1904 1905 1.6 339 0
106 Italo-Turkish War 1911 1912 1.1 45 0
107 World War I 1914 1918 4.3 57616 1
108 Russian Civil War 1918 1921 3 37 1
109 Manchurian War 1931 1933 1.4 73 0
110 Italo-Ethiopian War 1935 1936 0.6 29 0
111 Sino-Japanese War 1939 1939 4.4 1813 0
112 Russo-Japanese War 1937 1941 0.4 116 1
113 World War II 1939 1945 6 93665 1
114 Russo-Finnish War 1939 1940 0.3 362 0
115 Korean War 1950 1953 3.1 6821 1
116 Russo-Hungarian War 1956 1956 0.1 50 0
117 Sinai War 1956 1956 0.1 0 0
118 Sino-Indian War 1962 1962 0.1 1 0
119 Vietnam War 1965 1973 8 90 0
Note: Intensity refers to battle deaths per million European population. The Great Powers dummy equals
1 if two or more Great Powers were involved. Source: Levy (1983); see Appendix for more details.

Table A.1 continued



Western Europe 
dummy

1337 1360 Edwardian War Hundred Years'  War 24 1
1369 1389 Caroline War Hundred Years'  War 21 1
1415 1429 Lancastrian War Hundred Years'  War 15 1
1455 1485 Wars of the Roses 31 1
1496 1499 Russo-Swedish War, 1496-1499 4 1
1522 1559 Habsburg-Valois Wars 38 1
1554 1557 Russo-Swedish War, 1554-1557 4 1
1558 1583 Livonian War 26 1
1568 1609 Eighty Years' War I Ceasefire 1609-1621 26 1
1621 1648 Eighty Years' War II Ceasefire 1609-1621 26 1
1590 1595 Russo-Swedish War, 1590-1595 6 1
1594 1603 Nine Years War (Ireland) 10 1
1610 1617 Ingrian War 8 1
1618 1648 Thirty Years' War 31 1
1641 1649 Wars of Castro 9 1
1642 1651 English Civil War 10 1
1656 1658 Russo-Swedish War, 1656-1658 3 1
1667 1668 War of Devolution 2 1
1667 1683 Great Turkish War  17 0
1688 1691 Williamite war in Ireland  4 1
1700 1721 Great Northern War 22 1
1701 1713 War of the Spanish Succession 13 1
1733 1738 War of the Polish Succession 6 1
1739 1740 War of Jenkin's Ear 2 1
1740 1748 War of Austrian Succession 9 1
1741 1743 Russo-Swedish War, 1741-1743 3 1
1756 1763 Seven Years' War 8 1
1788 1790 Russo-Swedish War, 1788-1790 3 1
1789 1799 French Revolution 11 1
1798 1798 Irish Rebellion of 1798 1 1
1792 1815 Napoleonic Wars 24 1
1808 1809 Finnish War 2 1
1848 1849 First Italian Independence War Italian Independence Wars 2 1
1859 1859 Austro-Sardinian War/Second Italian Independence War Italian Independence Wars 1 1
1866 1866 Third Italian Independence War Italian Independence Wars 1 1
1854 1856 Crimean War 3 1
1866 1866 Austro-Prussian War 1 1
1870 1871 Franco-Prussian War 2 1
1877 1878 Russo-Turkish War, 1877-78 2 0
1893 1896 Cod War of 1893 4 1
1897 1897 First Greco-Turkish War 1 0
1912 1913 Balkan Wars 2 0
1914 1918 World War I 5 1
1916 1916 Easter Rising 1 1
1917 1920 Estonian Liberation War 4 1
1918 1919 Czechoslovakia-Hungary War 2 0
1918 1918 Finnish Civil War 1 1
1918 1920 Russian Civil War 3 0
1919 1921 Irish War of Independence 3 1
1922 1923 Irish Civil War 2 1
1936 1939 Spanish Civil War 4 1
1939 1945 World War II 7 1
1958 1958 First Cod War 1 1
1972 1973 Second Cod War 2 1
1974 1974 Turkish Invasion of Cyprus 1 0
1975 1976 Third Cod War 2 1
1994 1996 First Chechen War 3 0
1991 1991 War in Slovenia 1 0
1991 1995 Croatian War of Independence 5 0
1992 1995 Bosnian War 4 0
1996 1999 Kosovo War 4 0
1999 2006 present Second Chechen War 8 0
2001 2001 Conflict in Macedonia 1 0
2001 2001 Conflict in Southern Serbia 1 0
See Appendix for source and other details

Table A.2: The Wikipedia war data

Start End War Remark Duration
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Figure 1: The figure shows a decline in the frequency of war, and a rise

in per-capita GDP in Western Europe. Sources: GDP per capita is from

Maddison (2003, Tables 8a,b); the war indexes are computed from two data

sets, Levy (1983) and a list of European conflicts published by Wikipedia, as

explained in detail in Section A.1 of the Appendix.
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Figure 2: The figure plots annual death rates of wars involving at least two Great Powers, against the

mid-year of the war. WWI and WWII are excluded. These are outliers with very high death rates, and

including them would strengthen the upward trend in war death rates. Source: Levy (1983); see Table A.1

and Section A.1 in the Appendix for details.
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Figure 4: Simulation of a single economy (Model A). Panel D shows how the probability of war (zt) declines,

simultaneously with a rise in the deadliness of war when war if fought (1−vt = At/(λ+At)). This generates
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peace becomes permanent.
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Figure 6: Monte Carlo simulation of Model A. The paths show averages across 500 runs. [The exception is

the probability of war (zt in Panel D), which is calculated for a hypothetical economy where At and Pt equal

that of the average economy.] Note the inverse U-shape of the the standard deviation of the war death rate

in Panel C, as each country’s peak in war death rates is differently timed (cf Figure 5).
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Figure 8: Monte Carlo simulation of Model B. The paths show averages across 500 runs. [Like in Figure

6, the exception is the probability of war (zt in Panel D), which is calculated for a hypothetical economy

where At and Pt equal that of the average economy.] From around 1900 fertility starts to decline (Panel C).

Simultaneously, human capital starts to rise, making technology and per-capita consumption grow faster

(Panel A). Improved technology raises death rates in war, which together with rising consumption levels

and declining resource competition eventually leads to permanent peace, thus generating a decline in war

death rates (Panel B). The years are chosen so that war death rates peak in 1945.
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Figure 9: Results from the same Monte Carlo simulation of Model B as that in Figure 8, but here showing

the annualized growth rates of population and per-capita consumption, averaged over 500 runs. The figure

also shows a hypothetical growth path for population, in which war deaths are eliminated. Note that the

actual population growth rate is inversely U-shaped, with a “dent” similar to that experienced by Western

Europe in 1913-1950 (see Figure 7).




