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Abstract: This Online Appendix provides some additional material related to the man-
uscript “Understanding per-capita income growth in preindustrial Europe” (Lagerlof 2018),
henceforth referred to as “the paper.” It is organized into several subsections. Section 1
proposes some micro foundations of the model that was simulated in the paper. Section
2 walks through the calibration in more detail. Section 3 extends the time horizon of the
simulations to 2010, and compare the results to modern data. Section 4 compares the birth
and death rates from our benchmark simulation to data from England and Sweden. Section
5 incorporates marriage into the model, and illustrates how the results change in a couple of
simulations. Section 6 walks through some of the robustness checks discussed in the paper
in more detail. Section 7 explores the stability properties of a linearized dynamical system.
Section 8 derives analytical expressions for total output and output per capita in steady state
when fertility has a wage elasticity of one. Finally, Section 9 compares simulated population

trends to data.

1 Micro foundations for the model

This section proposes a model, similar to the simplified one in Section 4.1 in the paper,
that allows us to derive the fertility behavior in (9) in the paper, as well as an expression
describing consumption of all agents in the economy.

The model builds on a few, more or less plausible, assumptions. First, agents care about
births, rather than the stock of born (and living) children. Second, there are no means
of saving. These first two assumptions allow us to abstract from intertemporal allocation
decisions over long time horizons.

Third, children carry only goods costs, and no time costs. This is probably not impor-
tant, but simplifies the analysis, since working agents can then be assumed to supply labor
inelastically.

Fourth, agents derive utility from transfers to dependent agents in the economy, rather

than, e.g., transfers to their own children, or their own children’s consumption. This allows



orphans to consume; recall that agents face mortality risk through their whole lives, so some
dependent children will have no living parents.

Finally, some remaining assumptions, e.g. log utility, are quite standard.

One can discuss how plausible each of these assumptions is, but together they do generate
the fertility behavior described by (9) in the paper, and may at any rate serve as a good
starting point.

Consider thus the following set-up. In each model period ¢, agents in life periods j €
{B, ..., B} allocate the wage w;, between own consumption in the same period, c;;, total
transfers to non-active agents, 7;;, and spending on conceiving n;; children, at total cost
anjl-é‘s. As in Section 4.1 in the paper, ¢ is the inverse of the elasticity of the child-cost
function, and ¢; is a parameter that shifts the cost function and is here age dependent. This
gives the budget constraint .

Cjt = Wit = Tjt = Gy (A.1)

For simplicity, utility is defined over the economically and reproductively active phase
of life only; all other agents consume their incomes or transfers received, thus making no
choices. In particular, agents who work but have no children (j € {B+1, ..., R}) consume all
their income and do not make transfers. This can easily be relaxed, by defining their utility
in terms of transfers and consumption only, but not fertility.

An agent who becomes active in period ¢ has utility

B
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where u;, is direct utility (j being the period of life, ¢ the model period), and 5 € (0,1) is
a discount factor. The agents care about their own consumption, transfers, and the number
of children conceived, with weights n > 0 and 7 > 0 on the latter two, where n 4+~ < 1. The

period-utility can thus be written
ujy = (L —=n—7)In(c;) + nin(7;¢) +71In(ny). (A.3)

Because agents have no means of allocating resources intertemporally, they simply max-
imize the direct utility in every period, as given by (A.3), subject to the budget constraint

in (A.1). The first-order conditions with respect to n;; and 7, state that
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These can be solved to give consumption as a constant fraction of income:
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Using (A ) (A.4), and (A.6), spending on children also becomes a constant fraction of
income, g;n Jt = {07/ [1 —¥(1 — 9)]} wj4, so optimal fertility can be written as in (9), where
(er=tres)
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for j € {B, ..., B} and otherwise v, = 0.

Moreover, using (A.4) and (A.5), transfers become a constant fraction of income, 7;; =
{n/[1 —~(1 —6)]} wj., so that the factor n/ [1 — 7(1 — §)] effectively functions as a voluntary
tax rate.

For internal consistency of the model, we may also specify consumption of economically
non-active agents. Dependent children simply rely on transfers from the active generations.
Because the recipients of these transfers do not reproduce, the transfers play no role for
the results. To model consumption of retired agents we can make several assumptions. For
example, they could be partial recipients of the same transfers that children receive. Here, we
let retired agents be owners of land from which they earn rental income. This interpretation
means that agents receive an amount of land when they stop working as inheritance from
landowners who die. (This includes all agents in period T" of life, but also some younger
landowning agents, since agents die throughout the life cycle.) Like dependent children, old
agents are also reproductively non-active so their incomes and consumption play no role for
the results.

More compactly, this can be written as:
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The last of these uses (13) and (14) in the paper, to note that total payments to workers
can be written Z _pwitPir = (1 - )Y,



2 Data and calibration

2.1 Data on wages, fertility, and age-specific mortality

The age-specific fertility data in Figure 2 in the paper are from Statistics Sweden (1969,
Table 34). They refer to children born per woman in seven different five-year age brackets,
and are reported by decade, the first decade being 1751-1760. We use averages from 1751 to
1800. To translate the per-woman birth rates in the data to births per agent in our one-sex
model we divide by two.

The youngest age bracket refers to 15-19-year-olds, and the oldest to 45-49-year-olds.
We need to be careful to distinguish both an agent’s age from his/her period of life, and
conception from birth. The data refer to the mother’s age when giving birth, while the
period-of-life subindex (j in n;) refers to the period of life in which the child is conceived.
Because a child is born in the period after it is conceived, the model and the data coincide
numerically: for example, children conceived in period of life j = 15 are born when the
mother is of age 15 (period of life 16).

The age-specific wages in Figure 2 in the paper are from Statistics Sweden (1942, Table
11). These are annual wages in 1940 for male rural workers (lantarbetare), who were paid
some of their wages in kind (arbetare i kost), and the wage includes the in-kind payment. 1940
is the earliest year available in these data, and coincides with the Second World War, a period
when Sweden was largely cut off from trade, which may partly help mimic preindustrial
conditions.

The wage rates are defined for slightly different age brackets than for fertility. The
youngest and oldest brackets are open ended, labelled 18 and below, and 65 and above,
respectively. We assume that the youngest and oldest workers are of ages 14 and 69, respec-
tively, corresponding to 15 and 70 in terms of periods of life; recall that we set B = 15 and
R = 70. The wage of the youngest working age group (in life periods 15-19) is normalized
to one.

The age-specific survival rates in Table 2 in the paper are from Statistics Sweden (1969,
Table 40) and refer to the Swedish total population 1751-1800. The rates are defined for
different age brackets, the youngest of age 0 (the first year of life), the second youngest of
ages 1-2 (second and third years of life), and so on. The last age bracket is 80 and above,
which is here translated to ages 80-89, meaning that the 90th period of life is the last; recall
that we set T' = 90.



2.2 Setting 7,

Let w{*® be the wage in the data referring to an agent in the ith period of life (of age i — 1),

and let nd®* be the corresponding number from the fertility data (the number of children
conceived per woman in the ith period of life, divided by two). The age-dependent fertility

parameters are first set such that, for j € {15,...,19}, v, is given by

19 ata
_ Zi:15 n? ‘ (A 12)
7]‘ N 19 data 67 '
> inis (wi )

and analogously for the other age groups. This means that if the model can match the data
on wages it will also match the data on fertility.

As can be understood intuitively from the simplified model in Section 4.1 in the paper,
the v,’s are inversely related to steady-state wages. Fertility rates in the model adjust
to whatever makes population growth proportional to productivity growth, which in turn
determines the wage rates. Therefore, the 7,’s can be scaled uniformly to shift the age-wage
profile. In the benchmark specification no such scaling is needed to match the simulated
wages to data.

Values of ; for select age groups are shown in Table 3 in the paper.

2.3 Setting §; and p

We set p = .9, close to perfect substitutability.

We let 3; increase by 1% per year of life from B = 15 until period 32 (age 31), after
which f3; decreases by 1% per year of life and drops to zero after period R = 70, all subject
to Zf: B B; = 1. Values for select age groups are shown in Table 3 in the paper.

The period of life when 3, peaks is chosen to roughly coincide with the peak in the age-
wage profile in the data. Note from Figure 2 in the paper that wages decline more slowly with
age than they rise. This reflects that older cohorts are smaller, due to mortality throughout
the life cycle, making older agents scarcer than young, and thus their marginal products

higher; this is where imperfect substitutability (p < 1) plays a role.

2.4 Elasticities

Setting 0 = .15 translates directly to an elasticity of conceived children with respect to same-
year wages of .15; see (9) in the paper. To compare this to data, we compute the elasticity of
the Crude Birth Rate in a given year—the number of births over population—with respect
to wages in the previous year. The CBR in year ¢ equals the number newborns (agents who

are in the first period of life), over the total population in the same period, excluding the



newborns themselves:
Py
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The Crude Death Rate is computed as the total number of agents who die in a given year,

CBR in year t = (A.13)

divided by total population:
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Wages in year ¢ are computed as the (unweighted) average across all age groups of working

(A.14)
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We then simulate the model, under the benchmark parametrization, for 501 years (cor-
responding to 1300-1800), and 100 times. The result is a panel dataset with variation in
wages, CBR, and CDR across different (artificial) economies and over time. We then run
a number of fixed-effects regressions with the logarithms of CBR and CDR as dependent
variables, and log wages at different lags as independent variables.

The results are shown in Table A.1 for log wages at different lags. The reported coefficient
estimates represent elasticities since all variables are logged. Regardless of specification, the
estimates fall around .13 and —.2 for CBR and CDR, respectively. As discussed is Section
5.1 in the paper, this is similar to the empirical literature (e.g., Lagerlof 2015, Klemp and
Mgller 2016).

Note that we have not imposed anything on the model to produce the measured effects
from variables lagged two periods back. Rather, these effects are driven by the serially
correlated productivity shocks and the way the shocks are propagated through the model.

The CDR elasticity is guided by x, which was set to .01, and measures the elasticity of
the survival rate from starvation, s, with respect downward changes in per-capita incomes;
see (20) in the paper. The estimated CDR elasticity is much larger in absolute terms than
the survival elasticity, because the survival rates are close to one: small percentage changes

in survival rates correspond to large percentage changes in mortality rates.

3 Extended time horizon

The analysis in the paper was based on GDP per capita data from 1300 to 1800. Figure
A.1 shows the time paths of GDP per capita from 1300 all the way to 2010, for the same
five European countries considered in the paper. Before 1800, the source is the same as
in the paper (Fouquet and Broadberry 2015). For 1801-2010, we rely on Bolt and van



Zanden (2014), who update estimates initially compiled by Angus Maddison (2003).!! These
two sources report per-capita GDP data in the same units (1990 Geary-Khamis dollars).
However, for some of the countries there are discrepancies for overlapping years; they are
particularly large for Sweden, where Fouquet and Broadberry (2015) report a 33% higher
number for 1800 than Bolt and van Zanden (2014). For some years and countries, data are
also missing in the post-1800 period, in particular for Portugal 1801-1864. For these reasons,
we may want to take the drop in levels right after 1800 with a grain of salt, but we can
arguably put more trust in the numbers reported for more recent years.

Figure A.1 shows that a simultaneous take-off for all five countries some time around or
after 1800. This take-off is larger in magnitude than the expansions and contractions which
preceded it in each of the individual countries. In other words, the period up until 1800
looks stagnant in comparison to what follows.

We can also assess how well, or poorly, our Malthusian model performs when compared
to data over the whole period 1300-2010. To do this, we first assume that p, (the expected
growth rate in land productivity, A;) stays constant at 1.25% per year from 1800 and onwards.
All other parameter values are kept as in the benchmark setting. We then simulate the model
for 1000 economies and 710 years (210 more years than the benchmark simulation). For each
year, we calculate the median and the 5th and 95th percentiles of GDP per capita across the
1000 simulated economies, which can be compared to the country data in Figure A.1. We
normalize both the empirical and simulated log per-capita GDP series to equal zero when
averaging over time, and across either the five countries, or the 1000 simulated economies,
respectively. Note that this shifts the pre-1800 paths down compared to those in Figure 5
in the paper.

The results are shown in Figure A.2, which corresponds to Figure 5 in the paper, but here
considers the full period 1300-2010. As seen, toward the end of the sample period, the paths
of GDP per capita for all five countries overshoot the 95th percentile from the simulation.
They also dip below the 5th percentile shortly after 1800, which may be partly due to the
discrepancies in the data sources discussed above.

The simulated per-capita GDP levels do trend upwards several centuries after 1800, but
not enough to explain the data. If we were to run the model a few more centuries, the
simulated GDP per capita levels would stabilize at a non-growing plateau, associated with
the productivity growth rate of 1.25% per year. This level would be higher than in 1300,
when productivity growth was zero. Of course, the associated simulated population levels
would also continue to grow at a rate of 1.25% per year on average, which would not match
the data either.

Table A.2 shows the fraction country-years falling outside the 5th and 95th percentiles

1 See www.ggdc.net/maddison /maddison-project /home.htm



of the simulated data. For the entire period 1300-2010, about 17% of the country-years fell
below the 5th percentile and almost 10% above the 95th percentile. These numbers are not
too extreme in and of themselves. What stands out is the time profile. Almost all of the
country-years above the 95th percentile happened after 1800. For 1801-2010, 28% of the
country-years fell above the 95th percentile, compared to 0.5% in the pre-1800 era.

Among the five countries, Italy has the smallest fraction years above the 95th percentile
after 1800, namely 22%. The corresponding numbers for the other four countries range from
24% (the Netherlands) to 34% (England). Only about 6.6% of the 1000 simulated economies
fell above the 95th percentile in 22% of the years, or more, after 1800. That is, under the
null hypothesis that our model captures the true data generating process, the probability of
drawing one economy as extreme as Italy after 1800 is about 6.6%. This may not seem too
rare. However, the probability of drawing five countries at least as extreme as Italy by this
measure is 0.066° ~ 1.25 x 1075, or about 1.25 in a million.

The fraction country-years below the 5th percentile is high both before and after 1800,
although the post-1800 numbers might be partly due to the artificial drop in 1801. Recall
that, for years where they overlap, our post-1800 source (Bolt and van Zanden 2014) tends
to report lower GDP per-capita numbers than our pre-1800 source (Fouquet and Broadberry
2015).

4 Data on Crude Birth and Death Rates

This section compares the simulation results to data on Crude Birth and Death Rates (CBR
and CDR) from England and Sweden. The data sources are largely the same as those used in
the empirical literature discussed in Section 2.4 above. The English data are from Wrigley et
al. (1997, Table A9.1, p. 614), and are available on five-year intervals starting in 1541. This
gives us 52 years (from 1541 to 1796) that overlap with the simulation period 1300-1800.
The Swedish data can be found in Statistics Sweden (1969, Table 28, pp. 91-93), and are
available annually from 1749, thus resulting in equally many years (52) that overlap with
our simulations, from 1749 to 1800.'2

As is standard, the sources define CBR and CDR as total birth and deaths, respectively,
per 1000 population. As in Section 2.4, we here normalize them to per-capita terms. For
example, a CBR of 9.4 per 1000 is here reported as 0.0094.

Figure A.3 compares the time paths of log CBR in the English and Swedish data to the

12The English data are updates of those originally published by Wrigley and Schoefield (1981, Table A3.1,
pp. 528-529). Like the Swedish data, these can be accessed through the online publication Our World in
Data sponsored by Oxford University (Roser and Ortiz-Ospina 2017); see OurWorldInData.org, Section II.2
under the tab World Population Growth.



mean, and 5th and 95th percentiles, of log CBR in our simulations. We show the period
from 1541, since we do not have any earlier demographic data. The main insight is that
the Swedish and English data are similar both to each other, and to the mean across the
1000 simulated economies. The mean also shows a mild upward trend, reflecting that income
levels are rising due to accelerating growth rates in land productivity; cf. Figure 5 in the
paper.

We also note that log CBR levels fluctuate a great deal, and often fall outside the 5th
and 95th percentiles from the simulations. For England, 17% (9/52) of the years exceed the
95th percentile, and equally many fall below the 5th percentile; the corresponding numbers
for Sweden are approximately 17% and just below 10%. In other words, fertility seems to
fluctuate less in the model than in the data. But these differences are by no means extreme.
Among the 1000 simulated economies, 8.4% had CBR levels above the 95th percentile as
often as England did (i.e., in 17% of the years, or more), and 10.4% had CBR levels below
the 5th percentile as often England (also in 17% of the years, or more).

Moreover, if we consider possible measurement errors the deviations between model and
data may not seem too large, especially since we did not try to directly match these particular
data.

Figure A.4 presents the corresponding comparison of CDR data to the mean, and 5th
and 95th percentiles, of the simulated equivalent. Here the pattern is the reverse compared
to the CBR data: the fluctuations are smaller in the data than in the simulations. Log CDR
levels would be expected to fall outside the 5th and 95th percentiles in about 10% of the
years, and the data points for Sweden and England never do. But again, this result is not
really extreme either: as many as 7.8% of the simulated economies never fall outside these
boundaries. Similar to the CBR data, the model does really well in terms of mean levels.

There are some simple mechanical adjustments that one can make to the model to allow it
to better match these patterns. For example, one can add a random factor into the equation
determining fertility [see (9) in the paper], thus allowing it to vary independently of wage
fluctuations. One can also change the parameters 6 and x, which determine how sensitive
the fertility and death rates are to shocks to wages, but at the cost of making the fit of the
per-capita GDP fluctuations slightly worse. At any rate, the match is not perfect, but not
completely off either.

In Section 5 below we consider another extension that can feed more fertility fluctuations

into the model, namely letting marriage rates depend on wages.



5 Marriage

This section extends the benchmark model to allow for marriage. Since we are working with
a one-sex model, this requires some imaginative interpretations. When an agent in our model
“marries” we simply mean that (s)he enters a state in which the rate of fertility is higher,
holding constant age and income. The Malthusian mechanism we seek to capture here is
that the probability of a transition into marriage increases with income.
Recall from (16) in the paper that the population dynamics for all ages j > 1 can be
written
Pjt1i41 = 854D (A.16)

Let M, be the total number of agents in period j of life who are married in period ¢, and
let 7;; be the fraction of non-married agents in period j of life who become married if they

survive to the next period, i.e., the marriage rate. Abstracting from divorce, this implies
Misrper = 850 Mje +150850(Pjg — M), (A.17)

Dividing (A.17) by (A.16), and letting m;, = M;,/P;, be the fraction agents in period j of

life who are married in period ¢, gives
mMjy1e41 = Myt + Tj,t(]- — mﬂ). (A18)

To be able to simulate the model, we need to impose assumptions about how the marriage

rate is determined. To that end, we let

rie =13 T (A.19)

g

where r? ¢ is an age-dependent factor (varying only across periods of life, j), and where 7,

is a factor that depends on stochastic shocks and wages. Next let
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and )
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where 7, is drawn from a uniform distribution on [0, 2] in each period ¢, and thus has mean
one, and where (recall) w;, is the (age and time dependent) wage rate, and £ > 0 an elasticity
parameter. It is easy to see from (A.19) to (A.21) that the marriage rate falls between zero
and one, i.e., r;; = r;*7;, € [0, 1].

The positive relationship between the marriage rate (r;;) and the wage (w;,) embeds
into the model the Malthusian feature that a positive shock to land productivity and thus

wages induce more marriage, and thus higher fertility.
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Finally, we let fertility among married and non-married agents be njy"" and nj;™"",
respectively. Analogously to (9) in the paper, we then let
x z, 0
nj,t = ’U] wj,t’ (A22)

where v7 is a fertility parameter that varies with period of life, j, and marriage state,
x € {marr,unmarr}. While the levels of fertility at any given wage do vary with marriage
status and age through v7, for all agents we assume the same elasticity of fertility with
respect to wages as in the benchmark model, i.e., §. The overall fertility rate is thus given
by

nj; = [mj,tv;na” +(1-— mj7t)vynma”] wit. (A.23)

Note that setting m;, = 1 and v}"*" = v, makes fertility in (A.23) identical to that in the
setting without marriage; see (9) in the paper.

In principle, it is straightforward to simulate the model by simply using (A.18) to (A.23)
to update the fraction agents married in each period. The challenge is to find parameter

values that allow the model to match the data, as explained below.

5.1 Quantitative examination of model with marriage
5.1.1 Parameter values

The ambition here is merely to get a rough idea about how the predictions of this extended
model differ from our benchmark setting without marriage. To that end, we keep all ap-
plicable parameters (and functional forms) as in our benchmark simulation, and then set the
new parameters as follows.

First, we note that the mean of the stochastic part of the marriage rate (7;,) is approxi-
mately one. This follows because 7, has mean one, and the wage rate (w;,) by normalization
fluctuates around approximately one for the working (and marrying) ages; for £ not too
large, it then holds that wit is approximately one as well.

This means that we can set the age-dependent factor, r;*

, to match the age-specific rates
that we observe in the data. The earliest period for which we have age-specific marriage rates
is around 1861-1870 (Statistics Sweden 1969, Table 31). We want to translate these numbers
to the period 1751-1800 (which is the period that our age-specific fertility rates refer to in
the benchmark model). To that end, we use the gap in the crude marriage rates for Sweden
between the periods in 1861-1870 and 1751-1800, averaged across sexes, to scale the age-
specific marriage rates. (The numbers are found in Statistics Sweden 1969, Table 30.) This
implicitly assumes that the decline in marriage rates observed between the mid 1700’s and

the 1860’s was the same across age groups, which is probably at best a decent approximation.
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Second, we set the parameter that determines the elasticity of marriage rates with respect
to wages, £, to the same as the corresponding parameter for fertility. That is, £ = 0 = .15.

Finally, consider the parameters vj. These are set roughly analogously to how we set
the values for v, in the setting without marriage; see (A.12). More precisely, we first set vy
to match the age-specific fertility rates for married and unmarried women, respectively, as
observed in Swedish data for 1751-1800 (Statistics Sweden 1969, Table 35). We then find
that overall age profile of fertility from the simulations, as implied by these marriage rates
and marriage-specific fertility rates, is higher than that found in the data for 1751-1800, and
used in our benchmark calibration (Statistics Sweden 1969, Table 34). One reason could be
the imprecise way in which we have imputed the marriage rates above; another could be that
not all marriages in the data are first marriages. To better match the data, we therefore
scale the values for v downwards by a factor of .85. As shown below, this allows the model
to match the age profile of fertility in Sweden 1751-1800, thus also bringing it closer to the

benchmark calibration.

5.1.2 Simulation results

Age profiles The resulting age profiles in the simulations and the data are shown in Figure
A.5. Similar to Figure 2 in the paper, the model generated profiles are averages over 1000
runs for the last 50 years of the simulation, corresponding to 1751-1800 in the data. The
bottom two panels in Figure A.5 refer to the marriage rate (r;+) and the fraction agents being

married (m;;). The marriage rate profile in the data is simply the variable r{*°, imputed as
age
J

Not surprisingly, the model simulations can match these (imputed) data well, reflecting that

described above; the fraction being married is then generated from (A.18), setting r;, = r

the stochastic factor affecting the marriage rate (7;;) averages roughly one in the simulations.

The somewhat worse fit of the fertility (and wage) profiles in the top panels can partly be
understood from how we imputed marriage rates in Sweden 1751-1800 from marriage rates
in the 1860’s. In reality, agents probably married younger in the 1700’s that the 1800’s. As
discussed, even with more detailed data, it would be difficult to calibrate the model, since
agents have only one sex, and since there is no dissolution of marriages (e.g., through death
of one spouse). That said, the match between model and data are arguably close enough to

make at least some comparisons meaningful.

Regression results Table A.3 reports the results when regressing crude birth, death,
and marriage rates—CBR, CDR, and CMR, all in logs and defined as in Section 2.4 (or
equivalently for marriages)—on log wages of various time lags, using simulated data. These
correspond to those in Table A.1, but here reporting results also for marriage rates. As seen,

the estimated coefficients in the birth rate regressions are now larger. A shock to wages
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has a direct positive effect on fertility, as in the benchmarks setting, but now also induces
more marriage, which in turn raises fertility, since married agents have higher fertility than
unmarried. Note that we keep the parameters guiding fertility and mortality (6 and k,
respectively) as in the benchmark setting, rather than recalibrating them.

A related observation in column (4) is that birth rates now show positive correlation with
wages at a two-year lag, when controlling for current wages and wages at a one-year lag. This
contrasts with the result in the benchmark setting without marriage. Here positive wage
shocks have positive effects on fertility further into the future by raising current marriage

rates.

Comparisons to data from England and Sweden Figures A.6-A.8 compare the mean
and 5th and 95th percentiles of the simulated crude marriage, birth, and death rates to data
from England and Sweden, using the same sources discussed in Section 4 above (Wrigley
et al. 1997, Statistics Sweden 1969). Figures A.6 and A.7 correspond to Figures A.3 and
A.4 in the benchmark setting. As seen in Figure A.6, this extension captures more of the
variation in log CBR in both the Swedish and English data than the benchmark setting.
This is intuitive, since we now have another source of volatility in the birth rate.

As seen in Figure A.8, the model does a worse job matching the marriage rate, log
CMR. However, this seems to reflect the inherent problems discussed already associated
with matching this model to data. First of all, to make the crude marriage rate in the data
comparable to the simulations we have multiplied it by two, since each marriage implies that
two agents enter into the state of being married. (We divide per-woman fertility rates in the
data by two for similar reasons; see Section 2.1 above.) At the same time, different from the
model, not all marriages in the data are first marriages, which tends to make the marriage

rate as measured in the data mechanically greater than that in the model.

6 Robustness checks

This section provides more details about the robustness checks in Section 5.4 of the paper.

6.1 Only temporary shocks

The first exercise was to close down all permanent shocks by setting 04 = 0, and then
adjust the standard deviation in the temporary shocks by setting ox = .35. This serves to
position the distribution of simulated standard deviations somewhere in the middle of the
same measures for the five countries; see the top-right panel of Figure A.9. That is, we try to
make the model-data match in standard deviations as good as possible, given the constraint

that all shocks are temporary.
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As seen in Figure A.9, there is now too little serial correlation in the model-generated
distributions to match data, and the mean per-capita outcomes have far less dispersion than
observed between the five countries. Permanent shocks to productivity are thus needed for
the model to match the data. This is quite intuitive, since any standard Malthusian model
would predict that changes to levels in productivity have no effect on steady-state living
standards, but changes in productivity growth rates can, as we learned in Section 4.1 of the
paper.

This insight in a sense resembles that from simulating real-business cycle models, where
the model’s internal propagation mechanisms are often so weak that all persistence comes
from the shocks fed into the model (Gogley and Nason 1995). However, Figure A.9 also
shows that there is some propagation force at play that generates persistence in our model,
since even without any serially correlated shocks, the simulated distributions of measured
serial correlation have most of the mass above zero. In other words, the Malthusian model’s

internal mechanisms do matter for the results.

6.2 Using 1560 as start year

Data coverage starts in different years for each country, the latest (Sweden) lacking data
before 1560. As a result, the moments are calculated over different periods for the five
different countries. The easiest way to correct for this is to consider only the period 1560-
1800, for which all five countries have data. Figure A.10 illustrates the outcomes when doing
this for the data and the model simulations; the associated 5th and 95th percentiles from
the simulations are shown in Table 5 in the paper.

The means in the simulated series now show much larger dispersion, easily overlapping
with the means observed in data. This is because they are calculated on smaller samples
(over shorter time periods). Compared to Figure 6 in the paper, the moments for four of
the countries shift slightly, since they too are calculated over a different time period. The
model-data fit for standard deviations is similar to that in the benchmark case, with Italy
as the marginal case. Also similar to the benchmark case, the model cannot quite account
for some countries’ low levels of serial correlation; that of the Netherlands is lowest of them
all over this period.

However, the gaps between model and data are not huge. Note also that we here keep
ox and o4 at their benchmark values. The fit in Figure A.10 would be better if we were to

recalibrate these when using 1560 as start year.
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6.3 Higher elasticities

Two crucial parameters are those which guide the elasticities of fertility (§) and mortality
(k). Table 5 in the paper shows how the 5th and 95th percentiles of the simulated moments
change when doubling each of these over their benchmark values: § from .15 to .3. and
k from .01 to .02. Either of these changes shrinks the dispersion in means of per-capita
incomes across simulated economies, and lowers the levels overall of measured standard
deviations. Intuitively, the larger is either elasticity, the smaller are the effects of (both
permanent and temporary) productivity shocks, since population levels adjust faster when
wages increase, making the effects on per-capita incomes less prolonged. There is little effect

on the percentiles of the distributions of the serial correlation coefficients in Table 5 in the

paper.

6.4 Higher disease mortality

The parameter ¢ guides the mortality component that we associate with the disease envi-
ronment, s¢. A higher ¢ implies lower expected survival rates from disease, as well as higher
variance in the survival rate. Table 5 in the paper shows what happens when we double ¢
from .01 to .02. Mean outcomes become more dispersed, and the distribution of standard
deviations shifts up, and so do (at least marginally) the distributions of the serial correlation
coefficients.

This is quite intuitive; feeding larger shocks into the model makes outcomes vary more.
The increase in serial correlation can be understood from the way in which a standard
Malthusian model reacts to a disease-induced drop in population levels. After an immediate
increase in per-capita incomes, the economy converges gradually back to its Malthusian
steady state, showing up as persistence time series. A higher ¢ implies larger such shocks,

and thus more serial correlation.

6.5 Lower land share in production

The last row of Table 5 in the paper considers a reduction in the land share of output, «,
from .4 to .2. This shrinks the variation in the shocks to land productivity, as can be seen
from (10) in the paper. It also makes wages less sensitive to population changes (i.e., a
given rise in the labor force reduces wages less), which in turn implies more persistent effects
of productivity shocks. These effects tend to pull in opposite directions, in the sense that
productivity shocks have smaller direct effects, but those effects last longer. The net effect
here is that mean outcomes become less dispersed and standard deviation levels decline, but

there is also a small increase in serial correlation.
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The reason the increase in persistence does not show up much quantitatively seems to
be that changes in o have small impact when ¢ is small. This can be understood from the
simplified two-period Malthusian model in Section 4.1 of the paper, were we saw that the

exponent on lagged wages in the dynamic wage equation equalled 1 — do; see (7).

7 The linearized dynamical system

The dynamics can be described in terms of the log population size of each of the T age
groups, In (P;;), where j € {1,...,T}. The joint evolution of these log population levels is
guided by a T-dimensional dynamical system, which we can linearize around a non-growing
steady state equilibrium (see, e.g., Azariadis 1993, Ch. 6).

This section derives the Jacobian matrix associated with that linearized dynamical sys-
tem. To get there we need to impose some parametric assumptions. First we close down all
shocks to productivity and mortality (04 = 0x = ¢ = k = 0). Then we close down the
deterministic growth in productivity (y, = 0). This means productivity and mortality are
constant over time, A, = X; =1, and s;; = s;, for all .

Let @+ be a T' x 1 column vector, each element containing the deviation of In (P;;) from
its steady state level, In (Fj), where we use bars to denote steady state levels of all time

dependent variables. That is,

Q= | : . (A.24)
11’1 (PT—l,t) — ln (ﬁT—l)
In (PT,t) —1In (?T)

Next, let II be the T' x T" Jacobian matrix, whose element for each row j and each column

k equals Oln (Pj¢41) /0In (Py,) evaluated in steady state, i.e.,

[ om(PL 1) dIn(Prit1)
oln(Pie) |p. By dln( P _
Pjt=P;vj n(Pr.) Pj+=P;Vj
0= : : X (A.25)
oln(Pr 1) oIn(Prii1)
oIn(Pr,) _ oln(Pr,) —
L Pj =P,V P ,=PVj |

Now the linearized dynamical system can be written

Q1 = 11Q. (A.26)

The task is to find analytical expressions for the elements of I, and then study the magnitude

of its eigenvalues.
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7.1 Finding the elements of the Jacobian matrix
7.1.1 Second and higher rows

For all rows j > 1, it holds that
Pi1e41 = s; P4, (A.27)

where we use the population dynamics in (16) in the paper, setting s;, = s; for all ¢. Thus,
for all j and k such that j > 1 and k # j — 1, it holds that 0ln (Pj41) /01n (P;,) = 0; and
for all j > 1 and k = j — 1, it holds that 0In (Pj;41) /0In (Py;) = 1. We can thus write II
as

a}n(PuH) OIn(Pr41)
Oln(Py +) P =P,Vj T Bln(PTyt) Py—P;¥j
- 1 . 0 , (A.28)
i 0 . 0 |

For example, the second row of I contains 1 in the first column and zeros in all others. This
follows since 0ln (Py441) /0In (P1;) = 1 and 0ln (Pyy4q) /0In (Pyy) = 0 for all £ > 1. The
bottom row contains zeros in all columns, except column 7" — 1, which takes the value one.

Next we examine the first row of II.

7.1.2 The first row

The difference equation in (A.27) can be solved to give

Pj,t - Sjpl,t—j—i-la (A29)
where
7j—1
=1

is the (time invariant) probability that an agent survives to period j in life, and where S; = 1

and P; o are given. Imposing steady state on (A.29) gives
P; = S;Py, (A.31)

where (recall) steady state levels are denoted by bars. Next we use the expression for the
effective workforce, L;, given by (13) in the paper. Evaluated in steady state, and using
(A.31), we see that

T ’
L="P (Z Bij) : (A.32)
j=1
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Note that we here sum from 1 to T, rather than from B to R, which does not change
anything, since 3, = 0 for all j ¢ {B, ..., R}.
From (A.31) and (A.32) we also note for later use that

P\ _ P 5SS
6j<z> —BjS]P(Z) _Zleﬁjsf' (A.33)

The wage is given by (14) in the paper, here restated as

_0Y, 0L, Y, o (L
Wjt = a_Lta_Pji = (1 — Oé)ftﬁj (E) . (A34)

Recall that Y; is total output, which is here given by

Y = (AXy)" L% = L, (A.35)
since A; and X; are constant and equal to one. Fertility is given by (9) in the paper, i.e.,
i = W5, (A.36)

Using (A.34) to (A.36), we can write the number of agents conceived in period ¢ by agents

living in period j of life as follows:

5 0 s =P
Py =7;(1 = a) (L‘i) Bi <ﬁ) Fis (A.37)
_ ’Yj(l . >5Lf(1*afﬂ)6jpj{;5(1fp)

Recalling (15) in the paper, this gives the total newborn population in period ¢ + 1:
P].,t+]. = Z?:l njvtPjvt

= S (1= @) L0 g plodis) (A.38)
0(l—a— 1-6(1—
— (1= P LA ST ghploston),

where we recall that v; = 0 for all j ¢ {ﬁ, ...,E}, allowing us to write the sum from 1 to 7T'.
Taking the natural logarithm of (A.38) gives

:P_lf‘s(lfp)
T It
In(Prys1) =6In(l— @) +5(1—a—p)In (L) +1n | Y v;85exp{[1 = 5 (1 — p)|In (P;,)}
j=1
(A.39)
We thus find that
—6(1-p)
Ol (Priss) [ Oln (L) ] 7555 Pje
—— " =l —-a-— —— |+ [1-6(1— . A.40
a ln (Pji) ( p) aln (Pj,t) [ ( p)] Zle ’)/Jﬁjpjl’t_é(l_p) ( )
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We first derive an expression for the first term on the right-hand side in (A.40). Using (13)

in the paper again, we see that

=p°
T T ot
1 1 s " N
In(L;) = (—) In [Z BiPr | = <—) In Zﬁjexp{pln(Pjyt)} , (A.41)
P 1 p =
and
Ol (Pis)  \p) | X1, B,PL, PP Fse = s Ly b; Ly (A.42)
—_——
1/LY

Using (A.40) and (A.42) shows that

—6(1=p)
Oln (Pre1) _ P\ B3P
o (p,) GO ) ool T | ()

J= gt

Now (A.43) and (A.33) give

OIn(Pyiq1) _ P\ 5,857, °07”
aln(}?jj)l Py =P =0(l—a-— P)ﬁj (f) +[1=4d(1-p)] [ Jj‘:l’y]ﬂ?ﬁ]l_fé(lfp)
BiSj ;858,700
(A.44)
Next define 5.9
XJ Z}":i 5]],5; € (07 1)a
,},jﬁgs%—‘s(l—P) (A45)
4 = i < 0
We can now write (A.44) as
Jln (Pl t+1)
—_ =0l—a—p)X;+[1—-6(1—-p)|Z. A.46
Tt |y, gy, 0PN (A.46)
Using (A.46) and (A.28), the matrix IT can thus be written
5(1—04—,0))(1 5(1—0{—p)XT
+1-6(1-p)2Z1  +[1-6(1-p)Zr
= 1 . 0 . (A.47)
I 0 S 0 |

Using (A.45), computing values of the elements of the first row is straightforward, given

values for 6, a, and p, as well as 3;, v;, and S; for all j € {1,...,T}. Once we have the
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full T-dimensional matrix II it is then straightforward to compute its 1" eigenvalues. Figure
8 in the paper plots these in the complex plane for the benchmark parameter values. All
eigenvalues are located within the unit circle, implying that the linearized systems always
converges to its steady state; see, e.g., Azariadis (1993, Theorem 6.2). That is, P;, converges
to Fj for each age group j.

At the same time, the imaginary parts are large, and most eigenvalues are relatively
close to one in absolute terms, explaining why the dynamics also display a high degree of
persistence.

The degree of persistence depends on 9, which governs the elasticity of fertility with
respect to wages. Figure A.11 illustrates the time path of the log population gap of an
economy, whose initial population is below its steady state level, for three different values of
5. The log gap is measured as In(P,/P), where P, = Z]TZI P;, is total population in period
t [see (17) in the paper], and P = Z]T:1 P, is the steady-state level of P;. As seen, smaller §
implies slower transitions. Intuitively, when ¢ is small fertility is less sensitive to changes in
wages, so it takes longer for the Malthusian forces to push the economy back to steady state.
In the benchmark case, when o = .15, the gap closes by half after 356 years, compared 56
years when ¢ = 1.

Figure A.12 makes a similar point, illustrating how the absolute value of the largest real
eigenvalue of II varies with ¢ over the interval [0, 1]. It is closer to one when 0 is close zero,
becoming equal to one when ¢ = 0. The case when § = 0 implies that fertility is independent

of wages, so that population levels never converge.

8 Analytical steady-state expressions with unit-elastic
fertility

This section derives explicit analytical expressions for several variables in steady state, such
as output per agent, which determines survival from starvation; recall (20) in the paper.
First, we impose the same assumptions as in Section 7 above. That is, we close down all
shocks to productivity and mortality, and deterministic growth in productivity (o4 = ox =
¢ = Kk = u, = 0), making productivity and mortality constant (4; = X; =1, and s;; = s;).

Here we also impose unit-elastic fertility, i.e., we let fertility be linear in wages (6 = 1),
which makes it easy to find nice closed-form solutions. With ¢ = 1, fertility in (9) in the
paper can be written

Y,

L\’
=i =0 -8 () (249

where the second equality uses the expression for wages in (14) in the paper.
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Using (A.48), together with (13) and (15) in the paper, letting sums be written over age
groups 1 to T' (since 3, = 0 for all j ¢ {B, ..., R} and v; = n;, = 0 for all j ¢ {E, ...,F}),
we can now write the new-born population in period £ + 1 as

T Ys Ly e
Py :ijlvj(l_ >Ltﬁ (Pjvt> Py

=(1- a)YtM (A.49)
= (]_ — a)Qth,
where
6, = M_ (A.50)
Z] 1 6] 7.t

Next, using (A.50) and (A.29) gives

T T
6, D - 17jﬁapypt _ =185 Py —t (A.51)

Z] lﬁ] 7.t Z] 1BSPP1t —Jj+1

where S; is given by (A.30). In steady state, where P, is constant at Py, (A.51) can be

written

PUY 858 i8Sy
12j:15j J Zleﬁjsf

Using (A.32), and imposing steady state on (A.35), it can be seen that

0=

(A.52)

11—«

T 3
Z @.s;] . (A.53)

Next, evaluating Py ;11 = (1 — «)0,;Y; from (A.49) in steady state gives

s
I

P, = (1—-a)bY. (A.54)

— N (1-a)/
Now, (A.53) and (A54) give ¥ = [(1 — a)f¥ 1 [£7, 5,57 . which can be solved

for Y to give

11—«

[e3

Y =|(1-0a) (Z@ ) : (A.55)

Now (A.55), together with (A.30) and (A.52), defines Y in terms of exogenous parameters,

including the age-specific parameters v;, 3;, and s;. Then the steady-state population of

o=

the new-born age group can be computed from (A.54), and those of the other age groups
from (A.30) and (A.31).
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Output per agent in any period is given by (17) and (18) in the paper, i.e., y; = Y;/P, =
Y;/ 25:1 P; ;. Together with (A.54), and (A.55), steady-state output per agent can thus be
written o _

Yy Y 1

T & 5 T - a~—T :
Zj:l Py P Zj:l S; (1—a)f Zj:l S;

Y= (A.56)

9 Population paths and artificial countries

The paper examined how well the model could match per-capita GDP trends 1300-1800
in five European countries. Here we look at population trends in the same five countries
and over the same period. We rely on estimates by McEvedy and Jones (1978), which are
available for all five countries over the whole period 1300-1800, and have often been used in
earlier literature. These are little more than informed guesses, at least when going back as
far 1300. Moreover, the countries for which population levels are reported are not precisely
matched with per-capita GDP data. For example, GDP per capita data for Italy refer to its
northern part, while the population data are for the whole of Italy.

With these caveats in mind, the exercise we undertake here is the following. For each
country, we select the 25 simulated economies (out of 1000) whose time paths of log GDP
per-capita most closely resemble those in the data from that country, as measured by the
squared deviation summed across years. We then take the mean of log GDP per capita and
log population among those 25 simulated economies, and refer to these paths as representing
an “artificial” version of the country in question. This is done for each of the five countries.
We then compare the artificial paths to those in the data. In Figure A.13, they are drawn
as dashed red and solid black lines, respectively.

The population paths are the same as those in Figure 3 in the paper, normalized to equal
one in 1300 (or zero in logs). As in Figure 5 in the paper, the GDP per capita data come
from Fouquet and Broadberry (2015), and are normalized to equal zero when logged and
then averaged over time and across countries.

As mentioned, both GDP per capita and population may be measured with error. One
indication of this is that different sources sometimes report different GDP per capita numbers
for the same year and country. Recall from Section 3 above that the numbers from Fouquet
and Broadberry (2015) and Bolt and van Zanden (2014) differ by 33% for Sweden in 1800.
Another example is the disagreements between Gregory Clark and Stephen Broadberry and
coauthors about the reconstruction of the English GDP data; see Section 2 in the paper.
If some of these measurement errors persist over time, it can matter a lot, because small
differences in per-capita GDP levels in a Malthusian model tend to accumulate to large
differences in population levels over long periods of time. To help address this, we also

create artificial economies which mimic paths 20% above and below those in country data.
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These are the blue dotted lines in Figure A.13. The number 20% is arbitrary but could give
a sense of the magnitudes involved.

As seen from the panels in the top row of Figure A.13, the artificial (red dashed) paths
for log GDP per capita closely follow the corresponding paths in the country data. This is
not surprising, since they were constructed to do just that. Looking at the bottom row, we
can see how the population levels of these artificial economies compare to those reported by
McEvedy and Jones (1978). The results are somewhat mixed. The artificial paths mimic
the data relatively well for the Netherlands and Sweden, overshoot the data for Italy, and
undershoot it for England and Portugal.

Intuitively, if we take the simulated model and the per-capita GDP and population data
seriously, then we should expect to see more variation in the population paths between
countries than is reported by McEvedy and Jones (1978). Richer countries should see faster
population growth than they do, and poorer countries should see slower growth. For example.
Portugal should see a decline, which seems at odds with the data. However, the mismatch
is not complete, in the sense that relatively small shifts in the GDP per capita paths (in the
order of 20%) can account for much (if not all) of the variation in the population paths. If
we take into account the possibility of measurement error in population levels as well, the
mismatch is arguably not too bad, at least if we disregard Portugal.

A simple way to adjust the model to better match the population data is to assume
that cross-country variation in living standards affect fertility and mortality differently in
different countries. In particular, if the age-specific fertility parameter v, differs across
countries, then they would have different per-capita income levels in steady state, even when
otherwise identical. To compare such a model to data amounts to roughly the same thing
as comparing the current model to demeaned country data, i.e., after normalizing the data
so that all countries have the same mean when averaging across years.

Figure A.14 shows the results from an exercise identical to that in Figure A.13, but based
on demeaned country data. That is, we first normalize log GDP per capita to average zero
across all available years for each country. Then we create artificial economies, both of the
demeaned country paths, and of the paths 20% above and below these. As seen in the
bottom row of Figure A.14, the population paths of the artificial economies are much better
aligned with the data.

Of course, a model where the countries have different steady state levels of GDP per
capita would not really “explain” observed differences in mean per-capita incomes over time,
as the benchmark setting could; cf. the top left histogram in Figure 6 in the paper. Those
means are here zero for all countries by construction. However, the variance and serial

correlation coeflicients of the time series would be the same.
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Table A.2: Fraction of the years in which log GDP per capita fell outside the 5th and
95th percentiles across 1000 simulated economies when extending the model horizon to

2010. The results refer to all country-years over the periods 1300-1800, 1800-2010, and
1300-1800.

Period Fraction years below 5th | Fraction years above
percentile 95th percentile

1300-2010 | .17 .096

1801-2010 | .2 .28

1300-1800 | .16 .0051
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