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Abstract: In a Malthusian environment, per-capita incomes are stagnant, meaning they
cannot exhibit sustained growth. However, they can still display volatility and persistence

when hit by shocks. This paper simulates a Malthusian model with realistic life-cycle struc-

ture and stochastic and accelerating growth in land productivity. We �nd that di¤erences

across simulated economies are quantitatively similar to those found in recently compiled

data over GDP per capita for several European countries before 1800. This speaks to the

relevance of the Malthusian model for understanding preindustrial development in Europe,

contrasting with contentions to the contrary in some of the existing literature.
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1 Introduction

A common understanding of Malthusian models is that they predict per-capita incomes to

be independent of land productivity. In a Malthusian world, if one economy has higher

agricultural productivity than another, they should still have the same standards of living,

as long as they are otherwise identical. Changes over time in land productivity should not

translate into changes in living standards.

This contrasts with what we see in the data for several supposedly Malthusian societies.

Fouquet and Broadberry (2015) have used various sources to compile annual per-capita GDP

data for a handful of European countries from as early as 1300, up to 1800. These all display

sizeable �uctuations in per-capita GDP over time, and on average the levels seem to trend

upwards (see Figure 1).

However, those predictions refer to steady state outcomes in a non-stochastic environ-

ment, where levels or growth rates of land productivity are constant. If Malthusian economies

are subject to productivity shocks, then per-capita incomes always di¤er from the steady-

state level associated with a non-stochastic version of the model. In fact, as this paper tries

to demonstrate, in a stochastic Malthusian environment, per-capita incomes can di¤er a

great deal between any two economies, and they can be highly persistent over time within

economies, on an order of magnitude comparable to Fouquet and Broadberry�s data. More-

over, if rates of productivity growth trend upwards over time, so will levels of per-capita

incomes.

To make this point, we examine a Malthusian model with realistic life-cycle structure:

each period represents one year, permitting comparison to annual data. There is growth in

land productivity, and that growth rate is stochastic and its mean is increasing over time.

The model otherwise relies on the standard Malthusian building blocks. There is only one

sector, producing a good that we can interpret as food. When a land productivity shock raises

per-capita incomes, fertility increases and mortality falls, leading to a population expansion.

Because land is in �xed supply, per-capita incomes must subsequently decline. The model

is thus by construction unable to generate sustained growth in per-capita incomes.

We then simulate 1000 model economies for 501 years, representing 1300-1800, for plausi-

ble parameter values. For each simulated economy we measure the mean, standard deviation,

and serial correlation in per-capita incomes over the 501 years, and compare these to the

Fouquet-Broadberry data.

Qualitatively, the model-generated paths are strikingly similar to those in the data, with

several expansions and contractions lasting more than a century. Quantitatively, gaps in

per-capita incomes, and levels of persistence and standard deviation over half a millennium,

are all similar to what we see in the data.

The results hinge on a few assumptions that all seem realistic. First, part (but not all)
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of the productivity shocks must be persistent. This makes sense in this context. Consider,

e.g., increases in land productivity following the introduction of New World crops, like the

potato: once introduced it did not go away, so the rise in productivity was persistent.

Another important assumption, if the model is to produce the (seemingly non-Malthusian)

upward trend in per-capita incomes, is that the expected productivity growth rate increases

over time. This assumption is also realistic, because population growth rates increased over

this period. Indeed, we set productivity growth rates to match the simulated population

levels to data.1

Finally, the elasticities of fertility and mortality with respect to wages must not be too

large. Intuitively, low elasticities amplify and prolong the e¤ects of productivity shocks,

by reducing the speed at which population levels adjust. But again, empirical studies do

indicate elasticities low enough for the model to match the data.2

This paper relates to several papers tracing the origin of today�s world income distribution

to the transition of a few economies in Western Europe out of what is typically labeled

Malthusian stagnation (e.g., Galor and Weil 1999, 2000; Jones 2001; Hansen and Prescott

2002; Lucas 2002; Galor 2005, 2008). Critics have pointed to the non-stagnant preindustrial

environment in the Fouquet-Broadberry data as evidence against such theories. As discussed

further in Section 2 below, it is in the context of that debate that this exercise becomes so

important.

It is also true that variations on the standard Malthusian model can indeed alter its

prediction about stagnant living standards. For example, in settings with multiple goods,

and not only food, certain shocks can raise living standards permanently (Sharp et al. 2012,

Voigtlander and Voth 2013, Dutta et al. 2018). Endogenous �uctuations in Malthusian

models are studied by Dalgaard and Strulik (2015), who allow for investments in body

mass and thus subsistence requirements.3 These interesting extensions can be motivated

independently of the lack of stagnation in the Fouquet-Broadberry data. The current exercise

merely sheds light on how well a more standard Malthusian model can match those data.

This paper also relates to research on long life cycles in overlapping-generations frame-

works, often in continuous time (e.g., Lee 1974, Boucekkine et al. 2002, de la Croix and

Licandro 2013). These models are typically non-stochastic, but share some of the mecha-

1Rising growth rates in productivity during the Malthusian era is also a feature of many uni�ed growth

models. For example, in Galor and Weil (2000) the rate of change in technology is an increasing function of

population levels at the Malthusian stage of development. The model in de la Croix et al. (2018) generates

jointly rising rates of growth in population and technology through the evolution of institutions for knowledge

transmission.
2Recent empirical estimates of these elasticities can be found in Lagerlöf (2015) and Klemp and Møller

(2016). For further details, see Section 5.1 below, and the Online Appendix.
3See the simulation of the Galor-Weil model by Lagerlöf (2006) for another example of endogenous cycles

in a Malthusian context.
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nisms through which shocks can propagate themselves in our simulations.

Several papers have calibrated growth models to produce a transition from stagnation to

growth in per-capita incomes (e.g., Fernández-Villaverde 2001; Lagerlöf 2003, 2006; Bar and

Leukhina 2010). This paper is probably the �rst to examine whether a purely Malthusian

model, unable to generate sustained growth by construction, can generate transition-like

time paths when adding shocks to it.

Finally, this paper is motivated by other evidence that the preindustrial world was

Malthusian. Across regions de�ned by modern country borders, preindustrial levels of tech-

nology correlate more strongly and robustly with population densities than with living stan-

dards (Ashraf and Galor 2011). Moreover, the very same preindustrial economies displaying

non-stagnant incomes in the Fouquet-Broadberry data seem to react in a Malthusian fashion

to exogenous changes in per-capita incomes. Across Swedish counties in the 19th century,

good harvests were associated with higher birth rates and lower death rates (Lagerlöf 2015).

Similar patterns have been found for other Scandinavian countries in time-series data (Klemp

and Møller 2016), and for England (Nicolini 2007, Crafts and Mills 2009, Kelly and Ó Gráda

2014, Klemp and Møller 2016).

The rest of this paper is organized as follows. Section 2 further discusses some of the

debate on the importance of the Malthusian model for understanding human history. Section

3 summarizes some of the facts about per-capita incomes in preindustrial Europe that we

learn from Fouquet and Broadberry (2015) and their sources. Section 4 sets up the model,

�rst illustrating the main mechanisms in a stylized version in Section 4.1, and then presenting

a setting realistic enough to be simulated in Section 4.2. Section 5 presents the simulation

results and compares them to the data. Section 6 concludes.

2 The controversy

The relevance of the Malthusian model for interpreting human history has long been debated.

One exchange of views �ared up after the publication of Gregory Clark�s book A Farewell

to Alms (Clark 2007). Popularizing preceding theoretical work (e.g., Galor and Weil 2000,

Galor and Moav 2002), it argued in favor of a Malthusian interpretation of history, pointing

in particular to the absence of an upward trend in per-capita incomes prior to 1800.

A number of critical reviews followed, some gathered in a 2008 symposium published

in the European Review of Economic History. For example, Persson (2008) cited rising

preindustrial levels of urbanization in many European countries as evidence of growing per-

capita incomes; his review was titled �the Malthus delusion.�Voth (2008) made a similar

point, citing, e.g., data on household inventories among the poor in 18th-century Britain.

In his reply, Clark (2008) countered that the only direct and reliable measures of per-capita
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incomes, in particular from Britain, show scant evidence of any upward trend before 1800.

Some of the debate since has focused speci�cally on how to reconstruct GDP data for

preindustrial Britain, but even in that narrow context the conclusions are sensitive to the

assumptions made. Broadberry et al. (2013) argue that per-capita incomes were growing

long before 1800, while Clark (2013) argues that the patterns were rather cyclical, and that

per-capita incomes by 1800 were at roughly the same level as in 1380.

The current paper enters this debate from a slightly di¤erent angle: even if we do accept

that income levels in Britain (and/or other European economies) trended upwards over sev-

eral centuries prior to 1800, this can be consistent with a model that is otherwise Malthusian,

but where land productivity grows at accelerating rates. Indeed, using the same data for

Britain as Broadberry et al. (2013), this paper proposes a more nuanced conclusion regarding

the validity of the Malthusian model.

A slightly di¤erent critique of the Malthusian interpretation of history focuses not on

trends per se, but rather on the absence of �stagnation�in preindustrial per-capita incomes.

This view is expressed by Fouquet and Broadberry (2015, p. 227), who argue against what

they call the �received wisdom,�which �holds that the western European countries did not

experience major phases of economic growth (or decline) prior to the Industrial Revolution.�

As a case in point, they quote Hansen and Prescott (2002, pp. 1214-1215), who write

that �no signi�cant permanent growth in living standards�took place before the Industrial

Revolution.

Dutta et al. (2018, p. 359) concur with Fouquet and Broadberry (2015), and write

that the alleged mischaracterization of preindustrial incomes as stagnant �has led to the

development of theories that can accommodate long-run stagnation followed by explosive

and then sustained economic growth. [...] Perhaps the best-known example is uni�ed growth

theory.�As examples, they cite, e.g., Galor and Weil (1999), Jones (2001), and Galor and

Moav (2002).

It stands to argue that few of the contributors to Uni�ed Growth Theory would use the

term �stagnation�to mean literally constant per-capita incomes. For example, Galor (2005,

p. 180) suggests that �in the Malthusian epoch [...] income per capita �uctuated signi�cantly

within regions deviating from their sluggish long-run trend over decades and sometimes over

several centuries.�

However, to assess how much per-capita incomes can �uctuate in a Malthusian model

when subjecting it to shocks, a useful �rst step seems to be to simulate it under plausible

assumptions.
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3 The data

Figure 1 shows per-capita GDP for �ve economies (with periods indicated in parenthe-

sis): England/Britain (1300-1800), Italy (1310-1800), the Netherlands (1348-1800), Portugal

(1530-1800), and Sweden (1560-1800). The data are here reported in logs and normalized so

that the logged series equal zero when averaged over time and across countries.

The source for this data is Fouquet and Broadberry (2015), who in turn rely on various

in-depth studies for the respective countries.4 They also report data from Spain but not on

annual frequency so we do not use those numbers here. Compiling some of these data relies

on certain assumptions about, e.g., elasticities and sector speci�c productivity levels. For

the rest of this paper, we shall take the data as face value, but also remember that they

probably come with some measurement error.

Four things can be noted from Figure 1. First, per-capita GDP was not constant over

this period, but �uctuated a lot for all countries. Any model that seeks to replicate such

time series arguably needs some stochastic component.

Second, because of these �uctuations, there are noticeable di¤erences in GDP per capita

across these countries in any given year, and some of these gaps stay when averaged over

time. Portugal is poorest on average, and the Netherlands richest; cf. Table 5.

Third, average log GDP per capita across the �ve countries shows a mild upward trend

over time. This is easiest to see for the period after 1560 when data is available for all

�ve countries, but the same holds for earlier periods when considering only countries with

available data. In short, levels for most countries grow a little over time.

Fourth, the time series show a great deal of persistence. A country�s level of per-capita

GDP in any given year is highly correlated with where it was in the previous year, and even

two or three years back. Put another way, GDP per capita expands and contracts in long

cycles, rather than jumping all over the place from one year to another.

The next section discusses how these patterns could be reconciled with a Malthusian

model.
4The original sources are as follows: for England/Britain: Broadberry et al. (2011, 2015); for Italy (more

precisely its central and northern parts): Malanima (2011); for the Netherlands (more precisely the province

of Holland): van Zanden and van Leuwen (2012); for Sweden: Schön and Krantz (2012); for Portugal: Palma

and Reis (2016). Fouquet and Broadberry (2015) also cite a paper by Reis, Martins, and Costa as source

for Portugal, but the actual data is from Palma and Reis (2016); I thank Nuno Palma for pointing this out

to me.
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4 Theoretical framework

4.1 A simpli�ed setting

To compare any annual data to model-generated time paths it helps to let each model period

correspond to one year. Section 4.2 below considers such a model. However, it is useful to

�rst illustrate some of the mechanisms driving the results using an overlapping-generations

framework where agents live for only two periods. In the �rst phase of life, they are inactive

children; in the second, adult, phase, they earn income, consume, and rear children. To �x

notation, let agents who are adult in period t earn wage wt, consume ct, and rear nt children.

There are two twists to the framework presented here, compared to most textbook

Malthusian models: (1) an income-fertility elasticity less than one, and (2) sustained (but

for the moment constant and non-stochastic) growth in land productivity.

To capture the �rst of these model innovations, let the cost of rearing nt children be

qn
1=�
t , where q > 0, and where � 2 (0; 1] measures the degree of returns to scale in child

production. Most standard Malthusian models assume � = 1. We may interpret � < 1

(i.e., decreasing returns to scale in the production of children) as stemming from an implicit

production function for child survival, where parental time and food are inputs, and where

more children (less time per child) means that higher per-child input of the consumption

good is needed to ensure each child�s survival.

The budget constraint can now be written

ct = wt � qn
1
�
t . (1)

Utility is logarithmic and de�ned over the number of children, and (adult) consumption,

with weight e
 2 (0; 1) on the former:
Ut = (1� e
) ln (ct) + e
 ln (nt) . (2)

Maximizing (2) subject to (1), some algebra gives the agent�s optimal fertility as follows:5

nt = 
w
�
t , (3)

where 
 = (�e
=[q [1� e
(1� �)]])�. That is, the elasticity of fertility with respect to wages
equals �.

Total output in period t equals

Yt = (MAt)
�L1��t , (4)

5The Online Appendix shows how to derive (9), which is the corresponding relationship in the extended

model set up in Section 4.2.
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where � is the land share of output,M is total land size, At is a land-augmenting productivity

factor, and Lt is the size of the labor force, which is the same as the adult population.

Labor is paid its marginal product.6 Using (4), and normalizing land size to unity

(M = 1), the wage rate can thus be written

wt = (1� �)
�
At
Lt

��
. (5)

The second novelty compared to most other Malthusian models is the assumption of

sustained growth in land productivity, here set to some exogenous and constant rate g > �1:

At+1 = (1 + g)At. (6)

Each adult agent has nt children� all of whom are assumed (for now) to survive until

adulthood� and since all agents die after the adult phase of life, the labor force evolves

according to Lt+1 = ntLt. Forwarding (5) to period t + 1, and applying (3), (6), and

Lt+1 = ntLt, some algebra gives a �rst-order di¤erence equation for the wage rate:

wt+1 =

�
1 + g




��
w1���t , (7)

which has a unique and stable steady-state equilibrium, de�ned by

w =

�
1 + g




� 1
�

. (8)

Two qualitatively important insights can be gained from (8). First, the steady-state

wage rate, w, is higher in economies with faster productivity growth, higher g. This is quite

intuitive. When the wage rate is constant at w, the ratio At=Lt is also constant; recall (5).

Thus, population grows at the same (gross) rate as land productivity, nt = 1+g, which from

(3) requires higher wt in steady state. In other words, for population to keep up with faster

productivity growth, living standards must be higher.

The second insight from (8) is a corollary of the �rst. The positive e¤ect on w from

increasing g is stronger when � is small. Intuitively, the less elastic is fertility to changes in

wages, the more wages must increase in response to an increase in productivity growth to

keep productivity-population ratio constant. If � is small (and it seems to be at least less

than one in the data; see Section 5.1 below), then small di¤erences in g can generate large

gaps w.

This may explain how two otherwise identical Malthusian economies can have di¤erent

living standards, with relatively modest di¤erences in productivity growth rates. Moreover,

6Output not paid to labor is here implicitly assumed to be allocated to a landowning elite of small �xed

population size, playing no role in the rest of the analysis.
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patterns like those in Figure 1 could possibly occur if growth rates �uctuate over time. To

explore this possibility requires that these mechanisms are nested in a less stylized framework,

a task undertaken in the next section.

4.2 A more realistic setting

4.2.1 Fertility

Consider now an overlapping-generations model where agents live for at most T periods.

They are reproductive from period B to B, and earn wages from period B to R, where

1 < B < B < R � T .
In each model period t, an agent in period j 2 fB; :::; Rg of life earns a wage wj;t, which

determines the number of children conceived in that period (born in the next), analogously

to (3):

nj;t = 
jw
�
j;t, (9)

where � > 0 is the elasticity of fertility with respect to wages, and 
j > 0 is here an age-

speci�c parameter, such that 
j = 0 for j =2 fB; :::; Bg.
The Online Appendix presents a simple model, which generates the behavior postulated

in (9), as well as consumption of all agents (including those who do not earn incomes). For

the purpose of the current modeling exercise, we do not need to know where the behavior

described in (9) comes from.

4.2.2 Production and land productivity

In any period t, total output of a single good, Yt, is produced using a Cobb-Douglas pro-

duction function, with land and e¤ective labor as inputs, similar to the model in Section

4.1:

Yt = (XtAt)
� L1��t , (10)

where Lt is e¤ective labor (explained further below), � is the land share of output, and the

amount of land is (again) normalized to unity. Land productivity in period t equals XtAt,

where Xt and At are subject to temporary and permanent shocks, respectively. These shocks

are distributed as follows:

ln (Xt) � N(0; �X), (11)

and

ln (At+1)� ln (At) � N(�t; �A), (12)

where �t is the expected productivity growth rate, which is assumed to be time-dependent

(but non-stochastic), allowing mean growth in land productivity to change over time. The
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parameters �X and �A denote the standard deviations in the temporary and permanent

shocks, respectively. Temporary shocks could represent �uctuations in weather. Permanent

shocks could capture innovations to agricultural technology, or the e¤ects of newly introduced

crops; see Nunn and Qian (2011) for evidence of a positive e¤ect on population levels from

the introduction of potato.

In any model period t, let Pj;t be the population in the jth period of life, and let each

age group j 2 fB; :::; Rg supply one unit of labor. E¤ective labor is determined by a CES
aggregation function, allowing �exible substitutability between labor inputs of the di¤erent

working age groups:

Lt =

24 RX
j=B

�jP
�
j;t

35 1
�

, (13)

where � < 1, and
PR

j=B �j = 1. The most standard assumption might be that � = 1,

and that �j is constant across age groups, implying perfect substitutability between labor

supply of di¤erent cohorts. The alternative assumption (� < 1, and �j being di¤erent across

cohorts) can be interpreted as di¤erent age cohorts performing di¤erent work tasks, perhaps

because older workers have more experience, and younger workers more physical strength.

This allows the age distribution in any given period to have an e¤ect on output, and thus

incomes, and reproduction.

4.2.3 Wages

Recall that an agent in period j of life earns wage wj;t, which equals the marginal product

of that age group�s labor input. Using (10) and (13), some algebra shows that

wj;t =
@Yt
@Lt

@Lt
@Pj;t

= (1� �)Yt
Lt
�j

�
Lt
Pj;t

�1��
. (14)

Although it does not matter for the analysis, we here implicitly assume that the output not

paid to landowners (which can be seen to equal �Yt) is allocated to landowners, who we can

think of as old and non-active agents, using their income for consumption.7

4.2.4 Population dynamics

The new-born population in period t+ 1, P1;t+1, is made up of children conceived in period

t. A reproductive agent in the jth period of life conceives nj;t children, and since there are

7See the Online Appendix. Alternatively, land income could be allocated to a class of elite agents of small

and �xed size, rearing only one o¤spring per agent, and using the reminder of their income for consumption.
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Pj;t in each such cohort, it follows that

P1;t+1 =
BX
j=B

nj;tPj;t. (15)

For all other cohorts, population levels evolve according to

Pj+1;t+1 = sj;tPj;t, (16)

where sj;t 2 [0; 1] denotes the rate at which agents survive from the jth period of life to the

next (and from model period t to the next). We describe sj;t further below.

4.2.5 Total population and per-capita incomes

Let total population be denoted

Pt =
TX
j=1

Pj;t. (17)

For any given levels of output, Yt, and total population, Pt, the economy-wide per-capita

income level becomes

yt =
Yt
Pt
. (18)

In what follows, we shall let yt in the model correspond to GDP per capita in the data.

4.2.6 The survival rate

The model allows for three mortality factors: starvation, disease, and age. We want to

incorporate each of these, since they may all to some extent have impacted per-capita income

dynamics in the European data. For example, disease shocks could be one factor contributing

the volatility in per-capita incomes. To that end, the survival rate is de�ned as

sj;t = s
y
t s
d
t s
age
j , (19)

where syt , s
d
t , and s

age
j all lie on [0; 1], and represent survival from starvation, disease, and

age, respectively. Survival from starvation (syt ) is speci�ed as

syt = min

�
1;

�
yt
y

���
2 (0; 1], (20)

where yt is per-capita output in (18), y is the corresponding (non-stochastic, non-growing)

steady-state level of yt, and � is a parameter measuring the elasticity of the survival rate with

respect to falls in per-capita incomes. In this formulation, the mortality e¤ects are present

only when living standards are su¢ ciently low. This is broadly consistent with data from
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19th-century Sweden, where good harvests do not lower mortality much, but bad harvests

raise mortality (Lagerlöf 2015). It also seems intuitive that mortality from malnutrition is

constrained to zero when food intake is above some threshold level. Here that threshold is

set at the level associated with a Malthusian steady state absent shocks and starvation.8

The disease component in (19) is de�ned as

sdt = exp
�
��m2

t

�
2 (0; 1], (21)

where mt � N(0; 1) is a mortality shock, such that larger deviations of mt from its zero

mean imply lower survival rates, and � is a parameter capturing the size of the e¤ect of

these shocks. It can be shown that E(sdt ) = (1 + 2�)
�:5 � 1� �, so � is approximately the

expected annual death rate from disease.

Finally, the age component in (19), sagej , varies with age, but is constant over time. It is

set to match data from Sweden, as explained below.

5 Quantitative analysis

5.1 Benchmark parameter values

To generate simulated time paths to compare to data we �rst need to make assumptions

about parameter values. Most of these are summed up and explained in Table 1.

First, the life-cycle parameters B, B, R and T can be set very intuitively. Agents live for

at most T = 90 years, reproduce between life periods B = 15 and B = 49, and work from

B = 15 to R = 70, all conditional on survival.9

The land share of output (�) is set to 0.4, as in Hansen and Prescott (2002).

The reproduction parameters (
j), the age-dependent weights in the production function

(�j), and the elasticity of substitution between labor inputs of di¤erent age groups (�), are set

to jointly match age-speci�c fertility and wage data from Sweden. Fertility data are averages

from 1751-1800, and the wage data refer to agricultural workers in 1940 (the earliest year for

which such age-wage data is available, but Sweden was at the time particularly dependent

on its agricultural sector due to the second world war); see the Online Appendix for further

details. Values of 
j and �j are shown in Table 3 for three age groups. The model-data

match is illustrated in Figure 2.

8To be precise, we let y be given by the level derived in the Online Appendix, which applies to the case

with unit elasticity of fertility (� = 1), enabling us to easily �nd an analytical expression for y.
9Setting B = 49 means that, in the last period of life in which an agent can conceive a child, the agent�s

age is 48; the agent is thus in the 49th year of life. The child is born in the 50th period of the parent�s

life, when the parent is of age 49. Similarly, agents can start to conceive (a small but positive number of)

children when they are of age 14 (in the 15th year of life).
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Consider next the elasticity parameters, � and �. Klemp and Møller (2016, Appendix B)

provide a summary of estimated elasticities of fertility and mortality with respect to wages.

These are so-called long-run elasticities (sums of elasticities with respect to wages at various

time lags), and based on aggregated time-series data over Crude Birth and Death Rates (i.e.,

total births and deaths over total population), mostly from England and starting as early as

1540. Estimates of fertility elasticities range from :12 to :32, and mortality elasticities from

�:47 to �:08; most studies �nd numbers at the lower end of those intervals.
Since many of these are based on aggregate data one may worry about causality; part of

the variation could be driven by economic activity declining in periods when agents reduce

child rearing for other reasons than direct Malthusian checks, e.g., disease or war. Partly

addressing such concerns, Lagerlöf (2015) exploits cross-county harvest �uctuations in Swe-

den 1816-1856. Those elasticity estimates are somewhat smaller: :1 and �:09 for fertility
and mortality, respectively.

The Online Appendix describes in more detail how to compare the model-generated

survival and fertility rates to these estimates. In short, we compute the CBR and CDR

from our simulated data. We then regress the logarithm of these variables on logged wages

at various lags (see the Online Appendix). We set � = :15 and � = :01, putting the

elasticities estimated from the simulated data at around :13 and �:2, for birth and death
rates, respectively. These fall within the ranges of existing empirical estimates.

We set � = :01, implying that the expected annual death rate from disease is about 1%.

Finally, sagej is set to make E(sdt )s
age
j � (1� �) sagej roughly �t mortality data by age from

Sweden 1751-1800, with sage90 set to zero, so that all agents who survived for T = 90 periods

die with certainty after that; see Table 2.

The time-dependent expected growth rate in land productivity, �t, is set to increase from

0% per year in 1300 to 1.25% in 1800, with more of the increase coming toward the end of

that period. This makes the model match the double exponential trends in population levels

for the �ve countries, as shown in Figure 3, and also implies a rising trend in levels of GDP

per capita in the simulations.

The parameters measuring the dispersion in the shocks in (11) and (12), �X and �A, are

set so that the simulations generate moments of ln yt measured over 501 years as close as

possible to (or with at least some overlap with) the corresponding numbers in the data. This

is explained in connection to the results in Figure 6 below.

5.2 Initial conditions

We need to set start values so that the initial distributions are close to the steady-state distri-

butions to which they would eventually converge absent the trend in expected productivity

growth. Otherwise, the model might arti�cially generate high persistence, due to a standard
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convergence process over the �rst several periods. To that end, we set initial values at the

steady-state levels associated with a deterministic version of the model, with unit fertility

elasticity; analytical expressions for these initial values are derived in the Online Appendix.

We then simulate the model (without productivity growth, �t = 0, but with all other

parameters set as in the benchmark case above) over 500 periods before starting to measure

outcomes. The 501st simulated period represents the year 1300.

5.3 Simulation results

Among 1000 simulated economies under our benchmark parametrization, Figure 4 shows the

time paths of ln yt for the �rst four; recall that yt in (18) corresponds to GDP per capita in the

data. The paths are normalized to equal zero when averaged over time and across simulated

economies, similar to the data in Figure 1. As seen, in any given year we observe large gaps

in ln yt across these four economies, and each of them displays long cycles of expansions and

contractions over time. The patterns are strikingly similar to those based on actual data

in Figure 1. All the economies are parametrically identical, with all shocks drawn from the

same distributions, so the di¤erences between them are driven only by di¤erent realizations

of the shocks.

Recall also that the model which generates the paths is stagnant by construction, in the

sense that per-capita incomes cannot exhibit sustained growth; each of the growth spurts

in Figure 4 is eventually followed by a decline. Not knowing this, one could easily interpret

some of the growth phases as break-outs from stagnation.

The mean of ln yt across all 1000 runs shows a mild upward trend in Figure 4. This is

generated by the upward drift in productivity growth rates, as captured by the rise in �t.

To understand why, recall the simpli�ed Malthusian model in Section 4.1, where a higher

productivity growth rate is associated with higher per-capita incomes (and wages) on the

balanced growth path; cf. (8). When this growth rate increases gradually over time the

result is a gradual rise in per-capita incomes.

While Figure 4 shows just a few random paths, Figure 5 shows the 5th and 95th per-

centiles of ln yt in any given year among the 1000 simulated economies. That is, in any given

year, 90 percent of the simulated economies fall between these two percentiles. The corre-

sponding paths for the �ve countries in Figure 1 are also shown. The paths sometimes fall

outside of the interval, but mostly within. As shown in Table 4, there is variation across the

countries, but roughly 5% of all the country-years in the data fall below the 5th percentile,

and about 3% above the 95th.

The simulations allow us to examine how likely we are to observe a country as �extreme�

as those we have data for. For example, in Table 4 we see that Portugal�s GDP per capita

falls below the 5th percentile in about 29% of the years, which seems high. Among the 1000
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simulated economies, only about 2.1% had an experience as poor as that of Portugal (i.e.,

falling below the 5th percentile in 29% of the years, or more). However, the probability that

we should see at least one such country if we draw �ve at random is 1 � (1 � :021)5 � 0:1.
That is, we would expect to draw a country as poor as Portugal (by this particular measure)

with 10% probability.

Figure 6 gives a di¤erent picture of how well the model can match the data, by displaying

histograms over some time-series moments of ln yt: mean, standard deviation, and serial

correlation coe¢ cients at one- and two-year lags, each calculated over the 501-year period

representing 1300-1800. The �gure shows the corresponding numbers in the data as well,

also displayed in Table 5, together with the 5th and 95th percentiles of the histograms from

the simulations.

Consider �rst the top-left panel of Figure 6, which shows the distribution of means.

Re�ecting the di¤erent realizations of the shocks, some of the simulated economies have

higher means in ln yt than others. In principle, we can generate any amount of dispersion

with large enough standard deviations of the productivity shocks, �X and �A. But if we set

these too large it becomes di¢ cult for the model to match the corresponding distribution

for standard deviations of ln yt across the 501 years, as illustrated in the top-right panel of

Figure 6.

Table 5 illustrates this with some numbers. Under the benchmark setting, the model

can generate just enough variation in means to make (almost) all �ve economies fall within

the 5th and 95th percentiles of the simulated economies (Portugal being on the border),

but Italy falls slightly below the 5th percentile for standard deviations. We could make the

model account for Italy�s low levels of standard deviation, but then it would be harder to

match the low mean for Portugal.

A similar point can be made about the one- and two-year serial correlation coe¢ cients, as

shown in the bottom two panels of Figure 6, with numbers in Table 5. In data for Sweden and

Italy these two coe¢ cients fall below the bottom 5th percentile of the simulated economies.

However, the di¤erences are not huge, when considering that correlation coe¢ cients can

range from �1 to 1; note the scales used in Figure 6. There would be less serial correlation
with more dispersion in the temporary shocks (higher �X), and/or with less dispersion in

the permanent shocks (lower �A), but that would worsen the �t with standard deviations

and means, respectively.

Another way to compare the model to data is to examine how these moments co-vary

across the 1000 simulated economies, and the �ve real ones. This illustrated in Figure 7.

The right-hand panel shows that more serial correlation is associated with higher measures

of standard deviation, both across simulations and in the data. In the model, some of the

shocks to land productivity are persistent, and thus generate persistence in ln yt, making
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higher measured serial correlation be associated with higher measures of standard deviation.

As shown in the left-hand panel, there is no similar relationship between standard deviations

and means, either in the data or across simulated economies. Intuitively, shocks can be both

good and bad, so more volatile paths can be associated with lower or higher incomes on

average.

Of course, �X and �A were set to match these patterns, but it is far from obvious that

the model should be able to do as well as it does. Recall that the di¤erences in outcomes are

the result only of variation in the realized shocks across simulations. Indeed, the fact that

the match is not perfect illustrates this point. If we were to let these countries di¤er also in

some exogenous parameter� e.g., in terms of the 
j�s, which determine long-run per-capita

incomes� then it would be a trivial exercise to match model and data.

Moreover, given that the data probably also come with some measurement error, the

most reasonable interpretation seems to be that they do not reject the Malthusian model.

5.4 Robustness checks

We have learned that the Malthusian model can conform relatively well with the data. What

assumptions drive this result? Panel B of Table 5 indicates how the 5th and 95th percentiles

for the various moments change when altering some parameter values. More details are

provided in the Online Appendix.

An informative exercise is to close down the permanent shocks by setting �A = 0, and

increase the dispersion of the temporary shocks to �X = :35. That way we roughly match

the average across the simulated standard deviations to data, given the constraint that all

shocks are temporary. Interestingly, the simulations still generate some serial correlation,

due to the model�s internal mechanisms, but not nearly enough to match the data. In other

words, we need some persistence in the shocks that go into the model for it to match the

data.

Data coverage starts in di¤erent years for each country. Sweden, the country with the

least coverage, lacks data before 1560. If we consider only the period 1560-1800, for which all

�ve countries have data, the simulations generate more dispersion in mean outcomes, since

they are calculated on smaller samples (over shorter time periods).

Raising the elasticities of fertility and mortality, determined by � and �, respectively,

tends to shrink the dispersion in mean per-capita incomes, and lower standard deviations.

The reason is that larger elasticities imply larger e¤ects of productivity shocks, making

population levels adjust faster. This shortens the e¤ects on per-capita incomes.

Increasing the parameter � implies lower expected survival rates from disease, as well as

higher variance in the survival rate. As seen in Table 5, when we double � from :01 to :02,

mean outcomes become more dispersed, and the distribution of standard deviations shifts
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up. Intuitively, feeding larger shocks into the model makes outcomes vary more.

The last row of Table 5 considers a reduction in the land share of output, �, from

:4 to :2. This has two opposing e¤ects. First, because the productivity shocks are land

augmenting, it shrinks the e¤ective variation in the shocks. Second, it makes wages less

sensitive to population changes, thus increasing the persistence of the shocks.10 In our

numerical exercise, the �rst e¤ect dominates, in the sense that mean outcomes become less

dispersed and standard deviations smaller when we reduce �.

5.5 Extensions and other tests of the model

5.5.1 Trends after 1800

We can extend the time horizon of our simulations and compare the results to an era where

we would not expect to see any Malthusian stagnation. In the Online Appendix we merge the

data from Fouquet and Broadberry (2015) with post-1800 data from Bolt and van Zanden

(2014). There are some discrepancies in the data sources for overlapping years, but ignoring

these we get an (unbalanced) panel with GDP per capita for �ve countries 1300-2010.

We then simulate the model for another 210 years, representing the period 1300-2010.

We assume benchmark parameter values and let the expected productivity growth rate (�t)

stay constant after 1800 at the level it had reached then (i.e., 1.25% per year). We �nd big

di¤erences in how well the model can match the data before and after 1800. After 1800, 28%

of the country-years fall above the 95th percentile of the simulated data, compared to less

than 1% in the pre-1800 era. The model�s stagnant features are thus much more consistent

with the data before 1800 than after.

5.5.2 Birth and death rates

From our simulated data we can also calculate Crude Birth and Death Rates, i.e., annual

birth and deaths over total population. These can be compared to the corresponding numbers

for available years from England and Sweden, compiled byWrigley et al. (1997) and Statistics

Sweden (1969), respectively.

In the Online Appendix we �nd that mean levels of both CBR and CDR are similar in

the data and the simulations. The CBR �uctuations are somewhat larger in the data than in

the simulations, while CDR �uctuations are smaller. However, the di¤erences are not huge.

For example, among the 1000 simulated economies, as many as 8:4% had CBR levels above

the 95th percentile as often England did (in 17% of the years, or more), and 10:4% had CBR

10This can be understood intuitively from the simpli�ed model in Section 4.1, where we expressed the

dynamics in terms of wages; see (7). The exponent on the lagged wage rate is decreasing in �, so a smaller

� implies more persistence.
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levels below the 5th percentile as often England. If we consider possible measurement errors

the deviations between model and data arguable seem quite reasonable, especially since we

did not try to directly match these data.

5.5.3 Marriage

In a Malthusian world, positive income shocks can also a¤ect reproductive rates by inducing

more marriage. Here we have relied on a one-sex model, making it hard to even think about

marriage. In the Online Appendix we explore a stylized way to model marriage within a

one-sex structure. Agents transition from a state called �non-married� into another state,

�married,� at rates that are random, and dependent on age and wage rates. The only

di¤erence between the two states is that agents have higher fertility when married.

The Online Appendix performs a simple quantitative exercise of this model. We as-

sume that the marriage and fertility rates have the same wage elasticities, identical to the

benchmark simulation (� = :15). While very preliminary, some results are both intuitive

and interesting. Fluctuations in fertility become larger, which is very intuitive: productiv-

ity shocks now a¤ect fertility both directly in the same period, and by increasing current

marriage rates, thus rasing future fertility rates. For the same reason, fertility tends to be

positively correlated with incomes at deeper lags.

One shortcoming of this simple extension is that the Crude Marriage Rate (after cor-

recting for each marriage in the data representing two agents entering marriage) tends to be

lower in the simulations than in both English and Swedish data. While the model abstracts

from dissolution of marriages, in the data agents often marry more than once over a life cycle,

since marriages are dissolved when one of the spouses dies. Such dissolutions of marriages

are hard to model without a two-sex setting.

5.5.4 Stability of the linearized dynamical system

The dynamics of the model can be written in terms of deviations in the log size of each of the

T age groups from its steady state level. The Online Appendix studies a linearization of this

system, when closing down deterministic productivity growth, and shocks to productivity

and mortality (i.e., setting �t = �A = �X = � = � = 0); all other parameter values are set

as in the benchmark case in Table 1.

The stability of the linearized dynamical system is described by the eigenvalues of a T -

dimensional Jacobian matrix, which updates the log population deviation of each age group

in one period to that in the next. As illustrated in Figure 8, each eigenvalue has a real and

an imaginary part, and all are located within the unit circle, implying that each age group

converges in the long run to its steady state level. At the same time, the imaginary parts of
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the eigenvalues are large, and most eigenvalues are relatively close to one in absolute terms.

This explains why the dynamics display a high degree of persistence.

The degree of persistence is sensitive to the wage elasticity parameter, �. Intuitively,

when � is small fertility is less sensitive to wage shocks, so it takes longer for the Malthusian

forces to push the economy back to steady state. As shown in the Online Appendix, the

absolute value of the largest real eigenvalue gets closer to one as � gets closer zero. The

same thing can be illustrated by examining the half-life of a shock. Under the benchmark

parametrization, if an economy starts o¤with a population below its steady-state level (and

with the gap being proportional across age groups), then it takes 356 years for the gap in

log total population to close by half; the corresponding half-life when � = 1 is 56 years.

5.5.5 Population trends

The Online Appendix also examines population trends using the data from McEvedy and

Jones (1978) that we saw in Figure 3. For each country, we �rst select the 25 simulated

economies out of 1000 whose GDP per capita paths most closely resemble those in the data,

and refer to the mean among those 25 simulated economies as an �arti�cial�version of that

country. The arti�cial paths for log GDP per capita closely follow the corresponding paths

in the country data, since they were constructed that way. For population levels the results

are somewhat mixed. The arti�cial population paths resemble the data relatively well for

the Netherlands and Sweden, overshoot the data for Italy, and undershoot them for England

and Portugal. In other words, if we take the model seriously, we should expect to see more

variation in the population paths between countries than is reported in the data: faster

population growth in richer countries, such as Italy, and slower population growth in poorer

countries, such as Portugal. Intuitively, population di¤erences in a Malthusian model tend

to be proportional to productivity di¤erences, and productivity levels here follow a random

walk, thus diverging over time across countries.

However, relatively small shifts in the GDP per capita paths, in the order of 20% up

or down, are su¢ cient to capture most of the observed variation in population trends. We

argue in the Online Appendix that the observed mismatch is reasonable if we consider mea-

surement errors in both GDP per capita and population levels. We also show that the match

improves greatly when allowing per-capita income levels in steady state to di¤er across coun-

tries, e.g., by letting the fertility parameters, 
j, di¤er. However, such a setting would not

attribute observed di¤erences in mean per-capita incomes to variation in shocks only, as in

the benchmark setting.
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6 Concluding remarks

Over the last several years researchers have compiled high-quality comprehensive per-capita

income data for a couple of European countries from 1300-1800, recently summarized by

Fouquet and Broadberry (2015). The data display big �uctuations in per-capita incomes

over time, with a high degree of persistence, as per-capita incomes can move in long cycles

of expansions and contractions. The average per-capita income across these countries even

shows an upward trend. Can these observations really be consistent with the predictions of

a standard Malthusian model, which says that per-capita incomes should be stagnant?

This paper proposes a simple exercise to come up with a tentative answer to this question.

We set up a Malthusian model that is stagnant by construction, in the sense that it cannot

exhibit sustained growth in per-capita incomes, and simulate it 1000 times to compare the

time paths to Fouquet and Broadberry�s data. The life-cycle structure is such that each

model period corresponds to one year, enabling us to compare the results to annual data.

Land productivity is subject to shocks, both temporary and persistent, and the average

productivity growth rate increases slightly over time.

We try to be as informed as possible when setting parameter values: parameters guiding

age-pro�les for mortality, wages, and fertility are set based on data from preindustrial Swe-

den; elasticities of mortality and fertility with respect to wages are set to match empirical

studies on English and Scandinavian preindustrial time-series and panel data; the rise over

time in the mean productivity growth rate is set to make the model roughly match the

accelerating pace of population growth over the period.

It turns out that the model can match the data decently, as measured by means, standard

deviations and serial correlations in per-capita incomes over time, given the right amount of

variation in the land productivity shocks. The simulated time paths can show centuries-long

cycles of expansions and contractions in per-capita incomes. Not knowing that they are

generated by a Malthusian model, one could mistakenly believe that some of the expansions

constitute transitions out of Malthusian stagnation. Moreover, mean per-capita income

across all 1000 simulated economies shows an upward trend, mirroring the gradual rise in

the productivity growth rate, in turn set to match the accelerating population growth rate

over this period.

A few assumptions are important for these results. There must be growth in land pro-

ductivity, and that growth rate must be stochastic and increase over time in expectation.

Fertility and mortality cannot be too elastic with respect to �uctuations in wages. Like

discussed, the numbers used in the simulations are consistent with empirical estimates.

This is not proof that the Malthusian model set up here is the only one to explain

preindustrial growth in Europe. Other models may match the data equally well, or better.

This may include models that allow for (some modest amount of) quality-quantity trade-o¤
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in children, and/or the presence of a non-agricultural sector. The aim of this paper is to

start o¤ with a model without these features� one that is closer to how, e.g., Galor and

Weil (2000) and Hansen and Prescott (2002) model the pre-transition, or Malthusian, stage

of development� and assess whether it can at all be consistent with the data compiled by

Fouquet and Broadberry (2015). Indeed, the model-data match is not perfect, so one could

argue in favor of a somewhat more sophisticated model. However, it seems wrong to claim

that these new and important data obviously refute the Malthusian model.

Regardless of one�s preferred conclusion, this paper provides a parametric and numerical

framework that can be extended and used for other applications. For example, it could serve

as a starting point for constructing a uni�ed growth framework with realistic life cycles,

where existing simulations of such models tend to assume that each generation lives for only

two periods of 20-30 years each. Exercises such as that are left for future research.
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Table 1: Benchmark parameter values.

Parameter Value Interpretation/comment

T 90 Last period of life

B 15 Period of life when agents become economi-
cally and reproductively active

B 49 Last period of life being reproductively active

R 70 Last period of life being economically active

α .4 Land share of output; same as Hansen and
Prescott (2002)

δ .15 Gives fertility-wage elasticity of .13; similar
to Klemp and Møller (2016), Lagerlöf (2015)

κ .01 Gives mortality-wage elasticity of −.2; sim-
ilar to Klemp and Møller (2016), Lagerlöf
(2015)

φ .01 Expected death rate from disease is about
1% per year

γj See Table 3 To match age-fertility profile to Swedish data
in Figure 2

βj See Table 3 To match age-income profile to Swedish data
in Figure 2

ρ .9 Close to perfect substitutability between age
cohorts when determining effective labor

µt .0125(t/500)2;
t = 0 in 1300

Mean annual productivity growth rate rises
at accelerating rate from 0 to 1.25 percent
from 1300-1800; set to match population
data in Figure 3

σA .07 Standard deviation in permanent shock; set
to match moments in the data

σX .07 Standard deviation in temporary shock; set
to match moments in the data



Table 2: Age-specific survival probabilities, in Swedish data and in the model. The model
values are the expected survival rate from age and disease, but disregarding starvation.

Ages (j − 1) Survival rate
in the data

E[sdt ]s
age
j

0 .797 .797

1-2 .947 .947

3-4 .972 .972

5-9 .987 .990

10-14 .993 .990

15-19 .993 .990

20-24 .992 .990

25-29 .990 .990

30-34 .988 .988

35-39 .988 .988

40-44 .984 .984

45-49 .982 .982

50-54 .978 .978

55-59 .973 .973

60-64 .959 .959

65-69 .941 .941

70-74 .908 .908

75-79 .870 .870

80-88 .775 .775

89 NA 0

Table 3: Values for γj and βj for three select age groups.

j βj γj

18 0.0181 0.0104

32 0.0208 0.1128

40 0.0192 0.0468



Table 4: Fraction of the years in which log GDP per capita fell below the 5th percentile,
and above the 95th percentile, across 1000 simulated economies. The results are shown
by country and for all country-years together.

Country Fraction years below 5th
percentile

Fraction years above
95th percentile

England .024 0

Netherlands 0 .097

Sweden .004 0

Italy 0 .026

Portugal .29 0

All .046 .029



Table 5: Comparing moments in the data to the simulation results for the benchmark
calibration and when changing some of the parameter values.

Panel A: Moments in log GDP/capita time-series data

Country Mean Standard
deviation

1-year lag
correlation

2-year lag
correlation

England −.16 .25 .96 .95

Netherlands .31 .3 .96 .94

Italy .18 .097 .85 .74

Sweden .015 .13 .86 .74

Portugal −.35 .17 .94 .92

Mean across
five countries

.00 .19 .91 .86

Panel B: Moments in simulations [5th percentile, 95th percentile]

Benchmark [−.34, .41] [.12, .43] [.92, .99] [.9, .99]

σA = 0, σX = .35 [−.063, .068] [.18, .24] [.37, .66] [.37, .66]

Start year 1560 [−.41, .51] [.098, .35] [.87, .99] [.83, .99]

δ = .3 [−.28, .31] [.12, .39] [.92, .99] [.89, .99]

κ = .02 [−.27, .36] [.12, .41] [.92, .99] [.89, .99]

φ = .02 [−.57, .62] [.15, .55] [.94, 0.996] [.92, .99]

α = .02 [−.26, .29] [.065, .23] [.93, .99] [.91, .99]
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