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Abstract:

Over the past two million years human body mass first increased, and

later declined, peaking about 50,000 years ago. This paper sets up a model

with natural selection among body types to explain this pattern. Popula-

tion, technology, and average body mass evolve endogenously and interde-

pendently in such a way that a take-off in technological progress generates

rising population density and resource depletion. This in turn makes large

bodies less useful in food procurement, while keeping their metabolism re-

quirements fixed. The result is a shift in the reproductive advantage from

big to small bodies and an endogenous reversal of the time trend in body

mass.
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1 Introduction

This paper describes some trends in human body mass over the very long

run, and proposes a theory which can explain these trends. The first humans

arose about two million years ago. Up until about 50,000 years ago humans

grew bigger, whereafter human body mass began to decline. Indeed, the

decline over the last 50,000 years has been comparable in size to the preceding

incline but much faster. We suggest that these physiological trends can

be understood by linking them to trends in human population density and

technology.

By “humans” we here mean members of the whole genus Homo, not only

the species Homo sapiens (anatomically modern humans). The task is thus

to model a process through which humanity as we know it came to be. Many

changes occurred in this process, not least in the size and organization of the

brain. However, changes in body mass are particularly interesting because

they were not monotonic, and because they seem to relate to changes in the

ecological environment.

The facts described here should not be confused with humans becoming

both taller and fatter over the last three centuries, or so, which is probably

due to improved nutrition and health as humans have left a stage of Malthu-

sian stagnation and incomes have started to grow (see e.g. Fogel and Costa

1997). The focus here is on a completely different epoch, and much longer

time spans: not three hundred years but several tens of millennia, and more.

Physiological changes over such long time spans are more likely to be driven

by natural selection than changes in e.g. food supply. Notably, humans are

smaller today than 50,000 years ago but it is hard to argue that we were less

undernourished then.1

This paper sets up a growth model which can explain these facts and give

them a useful interpretation. This contributes to a growing literature using

economic theory to analyze issues in anthropology and biology (e.g. Smith

1Section 4 offers some thoughts on the role played by natural selection in shaping

human body size in more recent times.
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1975, 1992; Brander and Taylor 1998; Galor and Moav 2001, 2002, 2005;

Robson and Kaplan 2003), none of which has yet explicitly analyzed trends

in body mass.

The starting point of the theory proposed here is that large body types

can procure more food than small, but also carry higher costs in terms of

metabolism. An agent’s fertility depends on food procurement net of his

metabolic needs. A denser population makes a big body less useful in food

procurement, while keeping metabolism requirements fixed. Thus, popula-

tion growth shifts the reproductive advantage from large to small bodies.

Moreover, the model generates a population growth path which produces

this reproductive shift endogenously.

The initial population is assumed to be sparse and dominated by small

types (which is consistent with fossil data and the first humans having just

evolved bipedalism). This generates an initial slow parallel rise over time in

average body mass and population density. Rising population levels at some

stage spur faster technological progress, and thus even denser population,

and eventually a reversal in body trends.

The critical assumption is that body mass and technology have low com-

plementarity so technological advancements affect small and big types’ repro-

duction symmetrically. However, the rise in population density that follows

from technological progress adversely affects big types.

Physical anthropologists do not have many theories of what caused these

trends. Rather, their work is mostly descriptive and whatever explanations

can be found are often little more than lists of other facts, and quite “partial

equilibrium” in character. For example, Ruff (2002) explains the rising trend

in body mass by human habitats expanding into colder regions (like Europe)

where many of the bigger fossils have been found. It is well known that a

big body protects against cold. However, that does not explain why body

mass declined over the last 50,000 years. Robson and Kaplan (2003) focus

on rising brain-to-body ratios in human history, which in part was driven by

decreasing body mass in the most recent phase, but do not address why body

3



and brain mass increased in tandem before that. The model proposed here

explains both the rise and the decline in body mass. It is also consistent with

selection for smaller body documented among other animals in response to

resource limitation, in particular so-called island dwarfism.

The rest of this paper is organized as follows. This section proceeds by

describing the facts (Subsection 1.1), and linking the paper to some recent

work (Subsection 1.2). Next, Section 2 sets up the base-line model, including

a quantitative illustration (Subsection 2.5). The base-line model is among the

simplest in which the results go through, but most results can be replicated in

alternative and richer models, as shown in Section 3: for example, body mass

(and technology) can be used in competition for food against other humans

(Subsection 3.1); body mass and technology need not be perfect substitutes

(Subsection 3.2); and the resource base may evolve endogenously over time

(Subsection 3.3). Section 4 ends with a concluding discussion.

1.1 Empirical motivation

1.1.1 Body mass

The facts described here refer to body mass (or weight) but humans have

changed also in other ways over the last two million years. Examples of

changes include the development of bipedalism, increased brain-to-body mass

(or encephalization) ratio, increased longevity, reduced hair cover, and changes

in height and body shape. Neanderthals, for example, who died out about

40,000 years ago, had shorter limbs and larger trunks compared to humans

alive today. Part of their greater weight was thus due to different body pro-

portions, rather than height. When it comes to setting up a model we shall

think of changes in one single variable, body mass.

Knowledge about body mass (or other characteristics) of individuals who

lived so long ago is based on inferences made from the population of living

humans and other primates. From that population physical anthropologists

know quite well the correlation between the size and shape of many small
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bones, and the age, sex, and body weight of the individual it belongs to. With

the right statistical techniques, even small and scattered fossil bones can thus

generate useful inferences about e.g. body mass. There is a debate in the

profession about how to interpret several individual fossils but the general

long-term trends in body mass described here do not seem very controversial.2

Table 1 lists the estimated body weights for different samples of humans

and their respective time ranges.3 Figure 1 shows a time plot based on the

data in Table 1. Body mass increased up until about 50,000 years ago and

then declined. Since the decline is so rapid compared to the preceding incline

the changes are easier to see by using a logarithmic time scale.

We are not the first to note this inversely U-shaped pattern, even in the

economics literature. For example, the same body mass trends can bee seen in

Robson and Kaplan (2003, Figure 1), although in a different context (and also

somewhat harder to distinguish because the time scale is not logarithmic).

There is also complementary evidence supporting these trends. Ruff (2002,

p. 216) points out that many large-sized material artifacts have been found

from the periods during which human body mass estimates are relatively big.

This suggests that the people who used them were big too.

These changes in body mass also reflect the rise and fall of various human

species and changes in geographical habitats. For example, the decline is

partly reflected in the extinction of the Neanderthals (late archaic Homo

sapiens in Table 1), who were a separate species from modern humans and

physically adapted to a colder climate. However, also within our own species,

and after the Neanderthals were extinct (i.e., from 35,000 years ago and

onwards), body mass has declined over time.

2See Ruff (1994, 2002) and Ruff et al. (1997) for a more detailed description and

discussion of the facts. McHenry (1992) discusses the regression techniques.
3The data over living humans to which the fossil body weights are compared refer to a

large set of ethnic groups from all over the world; from Irish, to Australian aborigines, to

Inuites, to Yemenite Jews (Ruff 1994).
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Initial conditions In the model set up later, in order to replicate the

incline in human body mass over the earlier phase of human development the

population must start off dominated by small body types; this is consistent

with the data in Figure 1 and Table 1. One explanation for this initial state

of “disequilibrium” is that pre-human species lived in trees. Like for many

of our primate relatives today, the bodies of tree dwellers are constrained in

size by what tree branches can carry. About two million years ago, as the

environment where our ancestors lived became more open and less forested,

humanity started to evolve in the form of several new bipedal and terrestrial

species. Having just “climbed down from the trees,” these first humans were

thus relatively small. In fact, there was a small initial leap in body mass: the

first human species were bigger than their pre-human predecessors. However,

the upward trend in body mass continued also among subsequent human

species (Ruff 2002, p. 214 and Figure 1).

1.1.2 Population and technology

Whereas body mass has not evolved monotonically, population and technol-

ogy have. Figure 1 shows the time trend for total world population from one

million B.C. The numbers are of course not precise but the general trend is

not too controversial.

Technology, and its growth rate, have been increasing over time, at least

as measured by the number of innovations per millennium; see Tables 2

and 3.4 Notably, technological progress increased also before the agricultural

revolution, which dates to some time after 10,000 B.C. Also, Table 2 suggests

an initial rise in technological progress around 40,000 B.C., about the time

body mass began to decline. This coincides with the arrival of anatomically

modern humans in Europe, able to produce culture, music and art, displacing

the technologically and culturally backward Neanderthals. This is sometimes

referred to as the “Great Leap Forward” (Diamond 1992, Ch. 2).

4One could consider weighing these innovations in various ways; Abhijit Sengupta

suggested that beer should count as five inventions.
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In the model presented later technology and population interact in such

a way that population growth generates technological progress, or new ideas,

and thus further population growth. This relates to a broad literature on

scale effects in growth models, going back at least to Kremer (1993); see

Jones (2005) for an overview. Such mechanisms may be particularly rele-

vant in the very long-run historical context considered here. For example,

many archeologists argue that the invention of agriculture and many pre-

agricultural innovations were driven by rising population pressures and the

extinction of large prey (e.g. Smith 1975, Cohen 1977; see Weisdorf 2005 for

an overview).

1.1.3 Resource depletion and declining body mass

Resource depletion may also have driven the decline in human body mass.

The benefits of having a big body in food procurement are presumably greater

in hunting, in particular of large prey (e.g. mammoths), compared to gather-

ing food, hunting small prey (e.g. rabbits), or using slash-and-burn farming.

For example, spears would be easier to use for big individuals; later tech-

nologies like fish gorgets or bow and arrow (see Table 3) would not require

the same physical strength or body mass (Frayer 1981).

At the same time, there are costs of having a big body in terms of greater

energy requirements. According to data from FAO/WHO, the maintenance

energy required by an adult weighing 65 Kg. is about 2600 kcal per day;

the corresponding requirement of a 10 year-old of 31 Kg. is 1750 kcal per

day (Payne 1992, Table 3.1). Although there is some debate about the for-

mulas used, these requirements are supposed to give a rough idea of what

an individual needs to survive.5 Moreover, these numbers exclude energy

requirements for growth and physical activities (both of which are greater

for 10-year olds) and may thus indicate how energy requirements would dif-

5In this example, energy requirements are calculated as 1.5 times the so-called basal

metabolism rate (BMR), which in turn is a linear function of age, sex, and body mass.

Payne (1992) suggests energy requirements should rather be calculated as 1.27 times BMR.
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fer between full-grown individuals of the same weights. These numbers then

imply that a reduction in body size by about 50% (from 65 to 31 Kg.) would

reduce the amount of food needed for survival by about 33%, arguably not

a negligible amount.

This seems to suggest that resource depletion may have shifted the advan-

tage from big to small bodies. Moreover, that such depletion took place is well

documented by, among others, Smith (1975) and Diamond (1992, Chs. 17-

18). Examples include mammoths, bear-sized beavers, saber-toothed cats,

and various species of lion, cheetah, camel, rhino, and horse. The timing

seems roughly right too: these extinctions preceded (and perhaps caused)

the introduction of agriculture 10,000 B.C.; presumably some prey began to

be scarce and harder to find long before that.

Island dwarfism It is well known among biologists that large mammals

— in particular carnivores, like humans — tend to be smaller in ecologically

isolated environments, most notably on remote islands, known in biology as

the “island rule” (Foster 1964).

Similar to the mechanisms at work in the model presented here, biolo-

gists believe that such dwarfism is driven by the limited amount of resources

available on islands. When resources are locally depleted on the mainland

animals can simply migrate to new areas but on islands they either become

extinct, or only smaller specimen survive (Lomolino 1985).

Many examples of such island dwarfism have been documented among

other animals, e.g. elephants (Roth 1992) and three-toed sloths (Anderson

and Handley 2002). The evolution of reduced size can also be relatively

rapid. Anderson and Handley (2002) document a divergence in skull length

of sloths, from around 8 cm on the mainland to 7 cm on the island Isla

Escudo off the coast of Panama, which was separated from the mainland

about 9,000 years ago. The age of first reproduction for sloths is about 3

years; this makes about 3,000 generations. Equally many generations for

humans would amount to 60,000 years if each generation corresponds to 20
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years. This is in the same order of magnitude as the 50,000-year phase of

body mass reduction among humans from 80 Kg. to 60 Kg. (cf Table 1).

In fact, it was only recently that a fossil of a previously unknown human

species, about one meter tall when fully grown, was found on the island Flores

in the Indonesian archipelago, thus named Homo floresiensis (Brown et al.

2004, Diamond 2004, Mirazón Lahr and Foley 2004). In a sense, the model

presented here can be thought of as an “island dwarfism” story; it explains

the decline in body mass of modern humans over the past 50,000 years, or

so, as the result of resource depletion on the larger “island” of planet Earth.

1.2 Previous literature

This paper contributes to a number of recent economic theories on human

evolution. Galor and Moav (2002) seek to explain the “origin of growth” in

a model where agents have different preferences over quality and quantity of

children, which are inherited (see also Galor and Moav 2001). High-quality

agents invest more in their offspring, raising incomes and thus reproductive

success of the next generation of the dynasty. Over time, natural selection

thus works to expand the high-quality agents’ representation in the popula-

tion. Through a skill-technology complementarity this eventually sparks a

take-off in technological progress.

Others study the role played by natural selection in the shaping of the

human mind, e.g. risk preferences and rationality (Robson 2001, 2002, 2003,

Galor and Michalopoulos 2006).

This paper abstracts from the evolution of preferences, but may indirectly

contribute something to the mentioned theories, since changes in body mass

and other physical characteristics could be genetically linked to behavior and

preferences.6

Galor and Moav (2005) model changes in human longevity, suggesting

6For example, dogs are smaller and behaviorally different from wolves from which they

were bred (see further the discussion in Section 4). Also, different from preferences, changes

in body structure can be documented and estimated from fossil remains.
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that rising population density, and the associated rise in extrinsic mortality

(e.g. diseases), increased the reproductive advantage of agents predisposed

to high somatic investment (e.g. improved immune systems). The model can

replicate an empirically observed non-monotonic pattern in life expectancy:

an initial decline and a subsequent rise in longevity.7

Robson and Kaplan (2003) focus on the interaction between longevity

and brain size, suggesting that modern humans started to evolve due to a

drier climate, an expanding savannah-like environment, and an increase in

high-energy foods, like nuts. These foods required skills to harvest, thus

raising the value of large brains. Brains are costly to build and maintain

early in life and bring benefits late in life, so a large brain implies a greater

value of longevity. Longer lives further increase the returns to large brains,

in a mutually reinforcing process of human evolution.

Again, this paper does not focus on evolutionary changes in longevity or

brains, but rather on changes in body mass, or “brawns.”

Horan et al. (2005) analyze the extinction of the relatively large-sized

Neanderthals about 35,000 years ago (see also Faria 2000). The model set

up here seeks to explain both the initial rise in body mass and the subsequent

decline (notably, humans have become smaller also after the Neanderthals

died out). Also, technological progress plays a more central role here, com-

pared to Horan et al. (2005) who focus on the rise of trade and cooperation.

Arguably, many factors played a role and no single model contains all relevant

components; rather these models should be seen as complementary.

The role played by resource depletion in this model relates to an en-

vironmental literature analyzing the effects and causes of such depletion in

7Another paper focussing on diseases is Borghans et al. (2005), who document that

characteristics of the so-called Major Histocompatibility Complex (MHC), which deter-

mines defence against infections, are correlated with certain economic and health out-

comes, and levels of trust, in cross-country data. Since infectious disease spread through

contamination one agent’s resistance to a disease exhibits externalities. The authors the-

orize that societies with more cooperation better internalize such externalities, generating

the observed co-variation in the data.
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pre-industrial and pre-agricultural societies (Brander and Taylor 1998, Smith

1975, 1992). In the Brander-Taylor model humans consume out of a finite

renewable natural resource. This can explain the expansion and subsequent

downfall of human populations, as illustrated by the geographically isolated

Easter Island. In the Brander-Taylor model agents are identical so resource

depletion impacts only the size of the population, and not its composition.

Here resource depletion exerts different effects on different body types, thus

affecting the distribution of body types through natural selection. This story

arguably makes sense over very long time spans and in a global context, where

the “island” is planet Earth rather than Easter Island. It also resembles the

so-called island dwarfism phenomenon, as discussed in Subsection 1.1 above.

There are other papers which do not model natural selection but study

growth over relatively long time spans of several thousand years (e.g. Galor

and Weil 2000, Lagerlöf 2003, 2006). The aim is typically to explain, or

account for, growth rates in living standards being stagnant for very long and

then taking off just some hundred years ago with the industrial revolution,

simultaneously with first a rise, and later a decline, in population growth

rates (a demographic transition). The task here is to explain changes in body

mass, population and technology, occurring in the much more distant past.8

Therefore we abstract from many components which drive those models,

such as a quality-quantity trade-off in children. However, Section 4 briefly

discusses these issues in the context of more recent time trends.

2 The base-line model

Consider an overlapping-generations model where people live for two periods.

They are active as adults, and rear passive children. There is only one sex.

8Some related papers study the transition from hunting and gathering to agriculture

(e.g. Marceau and Myers 2006). Others study institutions during the pre-agricultural

phase of development without analyzing transitions to later stages (e.g. Baker 2003). See

also Weisdorf (2005) for a recent overview. However, these papers do not model changes

in body size and the role played by natural selection in that process.
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Agents are heterogenous with respect to body mass. There are G dynasties,

and dynasty i has body mass Bi, where

Bi ∈ B = {B1, B2, ..., BG} . (1)

Note that the set of types, B, is exogenous. In other words, there are no mu-
tations involved, and changes in average variables arise only through changes

in the composition of the population. Let zi,t denote the fraction of the pop-

ulation with body mass Bi in period t. Average body mass in period t is

then given by

Bt =
GX
i=1

zi,tBi. (2)

A dynasty-i agent active in period t earns an income (or procures an amount

of food) given by

Yi,t = F (At, Lt, Bi), (3)

where At denotes the level of technology, and Lt is land, or resources, per

agent. For simplicity, this section treats the resource base as exogenous and

normalized to unity, so we can write

Lt =
1

Pt
, (4)

where Pt denotes the total (adult) population size in period t. In that sense,

rising population and resource depletion here mean the same thing. (Sec-

tion 3.3 considers a setting where the amount of available resources evolves

endogenously.)

It makes sense that income should be increasing in each of its three ar-

guments, holding fixed the other two inputs. More resources (for example

land) per agent means more food procured per agent; having a larger body

amounts to more physical strength, which should have a positive effect on
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success in hunting;9 finally, an agent procures more food with more advanced

technologies.

We also assume that the cross derivative ∂F (A,L,B)/∂A∂B is small,

meaning that new technologies are substitutes for body mass. The world de-

scribed here is one where new technologies enable both big and small humans

to kill more prey. However, technology does not itself raise the marginal value

of body mass in food procurement (at least not by too much).

To generate simple analytical results the following parametric specifica-

tion is useful:

Yi,t = L
η
t [At + βBi] =

At + βBi
P η
t

, (5)

where η > 0 and β > 0. That is, technology and body mass are assumed to

be perfect substitutes. Section 3.2 examines how the results change with a

functional form exhibiting constant elasticity of substitution.

2.1 Reproductive success

The reproductive success of an agent of type i is given by his number of

(surviving) children, ni,t. This is assumed to depend on resources invested

in child rearing, which is given by the difference between the agent’s food

procurement and his own nutritional needs (his metabolism), which depend

on his body mass.

We are going to use this simple functional form:

ni,t = Yi,t − αBi, (6)

where α > 0 denotes the metabolic needs per unit of body mass, Bi, and the

product αBi is referred to as subsistence consumption.
10 Using (5) and (6)

9A large body may also be useful when competing for food with other humans; see

Section 3.1.
10A more precise way to write (6) would be as ni,t = max{0, Yi,t − αBi}. This would

serve to explicitly take into account that types whose incomes fall below their subsistence
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fertility becomes

ni,t =
At
P η
t

+Bi

µ
β − αP η

t

P η
t

¶
. (7)

Since both income and subsistence consumption are linear in body mass, so

is fertility. Thus, if ∂ni,t/∂Bi > 0 big types have more offspring than small

types and increase their relative fraction of the population, making average

body mass increase from period t to t+ 1; vice versa, if ∂ni,t/∂Bi < 0 small

types have more offspring than big types and average body mass decreases.

Using (7) it is seen that ∂ni,t/∂Bi > (<)0 whenever Pt < (>)(β/α)
1/η. That

is, there exists a threshold population level, (β/α)1/η, such that average body

mass decreases (increases) over time if population exceeds (falls below) that

threshold.

Thus, letting population expand exogenously would shift the reproductive

advantage from big to small types and generate the inversely U-shaped trend

seen in the data. However, since population evolves endogenously it remains

to see whether this actually happens.

2.2 Population

Since fertility is linear in body mass the average fertility rate takes the same

form as in (7), that is:

nt =
GX
i=1

zi,tni,t =
At
P η
t

+Bt

µ
β − αP η

t

P η
t

¶
, (8)

where we have used (2). Population evolves according to

Pt+1 = Ptnt = Pt

·
At
P η
t

+Bt

µ
β − αP η

t

P η
t

¶¸
. (9)

consumption levels become extinct. However, in any period t, fertility will still be given

by (6) for all types which are not becoming extinct in that period. In the quantitative

two-type example considered in Subsection 2.5 below, no type ever becomes extinct.
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2.3 Technological progress

The final component of this model is a scale effect in the creation of new

technologies. In order to make the model consistent with technology being

fixed in levels at early stages of development technological progress is mod-

elled as a stochastic event. The larger is the number of people who can think

about new ideas, the more likely is technological progress to occur. More

precisely, technology can be either stagnant or progress at some exogenously

given rate g > 0, and the probability of progress depends on population size,

according to:

At+1 =

(
At with probability 1− qt

(1 + g)At with probability qt
, (10)

where qt is given by:

qt = max

½
0, 1− θ

Pt

¾
. (11)

This particular functional form for qt is chosen arbitrarily but has a reason-

able interpretation. The parameter θ is a critical mass of agents needed for

technological progress to be feasible; technological progress occurs with pos-

itive probability only if Pt > θ. For Pt > θ the probability of technological

progress increases with population, and sustained population growth means

sustained technological progress at rate g (since limPt→∞ qt = 1).

2.4 Dynamics

To analyze the dynamics in a phase diagram it helps focussing on the case

where there are only two body types. In terms of (1), the set of body types

can be written as B =
©
B,B

ª
, where B < B.

First, consider the phase of development when technology is stagnant,

At = A0. Recall from (10) and (11) that this holds with certainty when

Pt ≤ θ, and with positive probability otherwise.
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We also assume that A0 < β/α. This ensures that, in the technologically

stagnant phase, population is greater in the steady state where big types

dominate.

The dynamic behavior of this economy is illustrated in Figure 2, and

formalized by the following proposition.

Proposition 1 Let income be given by (5) and fertility by (6). If there

are two body types, B < B, and technology is constant at its initial level

A0 < β/α, the following holds.

(a) Population evolves according to:

∆Pt = Pt+1 − Pt R 0⇐⇒ Bt R
P η
t − A0

β − αP η
t

. (12)

(b) Body mass evolves according to:

if Bt = B or Bt = B, then ∆Bt = Bt+1 − Bt = 0;
if Bt ∈ (B,B), then

∆Bt = Bt+1 −Bt R 0⇐⇒ Pt Q
µ
α

β

¶ 1
η

. (13)

(c) There are two steady states: one where small types (B) dominate, and

one where big types (B) dominate; the population is larger in the steady

state where type B dominates.

The proof is found in Section A.1.1 of the appendix.

The dynamics are illustrated in the phase diagram in Figure 2. If the

economy starts off with a collapsed distribution where the big body type is

extinct it converges to the steady state SS, following a path given by the

horizontal line Bt = B; there are no body mass dynamics. If the initial

fraction large agents is very small but strictly positive, the economy rapidly

gravitates toward the neighborhood of point SS. It is thus natural to consider

SS as the starting point of human history two million years ago, just after

humans had become bipedal.
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An economy starting off close to SS stays there for a long time, and

eventually follows a trajectory close to the (∆Pt = 0)-locus, with expanding

population and growing average body mass, approaching SS’. The steady

state SS’ has larger population than SS given that A0 < β/α. The trajectory

is illustrated by the dotted path in Figure 2. Note that the population grows

as a result of increasing average body mass: aggregate population expands

because the composition of the population shifts toward big types who in a

low-technology environment have higher reproductive rates.

Absent the possibility of technological progress the economy stays forever

at SS’ in Figure 2, where big types dominate and population is non-growing.

Something akin to this may have happened to many non-human species, who

never began to develop new technologies (at least not to the same extent as

humans). Gorillas could be one primate example.

Now allow for technological progress. Recall from (10) and (11) that

as population reaches the threshold θ, technological progress occurs with

positive probability. Once a rise in technology has occurred the feedback loop

between population and technological progress sets in. This is illustrated in

Figure 3, where population is expanding throughout the whole range of Pt

considered. [The dynamics of body mass do not depend on technology so the

(∆Bt = 0)-locus is the same as in Figure 2.] As population comes to exceed

(α/β)1/η the reproductive advantage shifts to small types and average body

mass starts to decline.

Moreover, the decline in body mass is faster than the preceding incline,

since the trajectory it follows is situated farther from the (∆Bt = 0)-locus.

Letting Pt go to infinity and Bt go to B in (8) or (9) one can deduce the

following.

Proposition 2 An economy where technology grows at rate g converges to

a balanced growth path where At/P
η
t = (1+ g)

1/η+αB, and population grows

at rate (1 + g)1/η − 1.

The proof is in Section A.1.2 of the appendix.
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This balanced growth path should not be thought of as describing the

modern economy in which we live today, but rather the state of slow but

positive technological progress prevailing in the pre-agricultural phase of de-

velopment before 10,000 B.C. (see Tables 2 and 3).

2.5 A quantitative illustration

The phase diagrams in Figures 2 and 3 illustrated an economy where technol-

ogy was either constant or growing. To examine how the economy behaves if

technology evolves endogenously and stochastically, following (10) and (11),

this section presents a simulation.

Due to lack of data, and the stylized setting, we cannot really calibrate

the model, but there is at least some logic to how the parameter values are

chosen. These values are summed up in Table 4.

Sticking to the two-type setting described above, the body types B and B

can be thought of as fractions of 100 Kg., so that the bigger type (B = 0.8)

weighs 80 Kg., and the smaller (B = 0.6) 60 Kg. (cf Figure 1).

Initial technology, A0, is set to unity.

As described already, the economy starts off with almost only small types,

capturing a state in which humans had just climbed down from the trees and

begun developing bipedalism. That is, the initial fraction big agents is set

close to zero, so that initial average body mass, B0, is close to (but slightly

greater than) B.

Given that there are very few of the large type initially their fraction

changes very slowly at first. To avoid initial rapid adjustments in popula-

tion we initialize population to [(A0 + βB)/(1 + αB)]1/η, corresponding to

population at point SS in Figure 2.

Setting η sufficiently small ensures that P η
t is close to unity in the techno-

logically stagnant phase, when Pt is not too large. That way, β − α roughly

measures the marginal effect on fertility from an extra unit of body mass

during the stagnant phase, and −α measures the same marginal effect when
population levels become very large. Setting β and α close to one another,
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and sufficiently small, also ensures that both types have positive fertility in

all periods, so that no type becomes extinct. The values chosen here also

generate roughly the right speed in the decline in body mass.

We set θ, the critical mass of people necessary for technological progress,

just below population in the steady state corresponding to point SS’ in Figure

3. Recall that this is the steady state the economy would converge to if

technology remained stagnant. This ensures that at some point in time the

chain reaction of population expansion and technological progress sets in.

The rate of technological progress, g, is set to generate reasonable values

for the expansion in population and technology. Since we are concerned

primarily with the era before the agricultural revolution we choose to set

g to 3/10,000 per period (about 20 years). This gives a growth rate of

technology around 1.5% per millennium on the balanced growth path, which

seems reasonable for the pre-agricultural era up to 10,000 years B.C., given

the numbers in Tables 2 and 3.

The economy is run for 80,000 periods, but to limit the size of the figure

files the time paths are generated using data from every 200th period. Due

to the way technological progress is modelled the timing of the take-off in

technological progress is random but varies very little across runs, usually

arriving after 55,000 to 60,000 periods. In the simulation reported in Figures

6 to 8 average body mass reaches a maximum in period 57,853 (about 1.2

million years after the first period if each period is 20 years long). Around

the same time population reaches the critical mass for technological progress,

and technology starts to grow.

The time path for body mass is shown in Figure 6. As seen, it is consistent

with the pattern in Figure 1.

Figure 7 shows that average fertility [as given by (8)] stays close to unity

in the stagnant phase, and then rises and stabilizes at (1 + g)1/η on the

balanced growth path (cf Proposition 2). Since fertility is strictly greater

than one during the stagnant phase, over thousands of periods population

levels rise, as shown in Figure 8. (Note that Figure 8 shows only the first
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60,000 periods.) The take-off in technological progress arrives as population

reaches the threshold θ, leading to a rapid acceleration in population growth.

It is possible to see how population in the absence of a take-off in technological

progress would converge to a constant level, associated with the steady state

SS’ in Figure 2.

3 Extensions

The base-line setting presented so far is one of the most intuitive and trans-

parent models which can replicate the trends described earlier. However, as

we shall see next, many assumptions can be relaxed without changing the

underlying mechanics and results.

3.1 A competition model

Having a large body may be an advantage when competing with other hu-

mans for food. If so, not only absolute body mass, Bi, may affect food

procurement, but also relative body mass, Bi/Bt.

Consider the extreme case where only relative body mass matters, and

absolute body mass plays no role at all. Analogous to the specification in

(5), let

Yi,t = P
−η
t

·
At +

βBi
Bt

¸
. (14)

With this formulation there is no net food gain as the average agent grows

bigger; the average agent procures P−ηt (At + β) independently of Bt. Using

the expression for fertility in (6), ni,t = Yi,t − αBi, it can then be seen that

ni,t =
At
P η
t

+Bi

µ
β − αBtP

η
t

BtP
η
t

¶
. (15)

As in the base-line model, the sign of ∂ni,t/∂Bi determines which type (big

or small) has the reproductive advantage and increases its share of the pop-

ulation. From (15) it thus follows that body mass decreases (increases) over

time if BtP
η
t > (<)β/α.
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Holding constant the level of technology at some level A, the dynamics

of Bt and Pt can be analyzed in a two-dimensional phase diagram. First

consider a formal characterization of the dynamics.

Proposition 3 Let fertility be given by (6) and income by (14). If there

are two body types, B < B, and technology is constant at some level A, the

following holds.

(a) Population evolves according to:

∆Pt = Pt+1 − Pt R 0⇐⇒ Bt Q
A+ β

αP η
t

− 1
α
. (16)

(b) Body mass evolves according to:

if Bt = B or Bt = B, then ∆Bt = Bt+1 − Bt = 0;
if Bt ∈ (B,B), then

∆Bt = Bt+1 −Bt R 0⇐⇒ Bt Q
β

αP η
t

. (17)

(c) For all levels of technology two steady states exist, where either small

types (B) or big types (B) dominate; the population is smaller in the

steady state where B dominates.

(d) For intermediate levels of technology, A ∈ (β/(αB),β/(αB)), there also
exists a steady state where body mass equals B = β/(αA) ∈ (B,B), and
population equals P = A1/η.

The proof is found in Section A.2.1 of the appendix. Figure 4 illustrates

the dynamics for the case with a low level of technology, A < β/(αB); and

Figure 5 the case with intermediate technology, A ∈ (β/(αB), β/(αB)).
The point SS in Figure 4 is a stable steady-state equilibrium with small

population and large average body mass. It can be seen from (15) that an

(exogenous) rise in technology has no direct effect on the sign of ∂ni,t/∂Bi,

thus leaving the (∆Bt = 0)-locus unchanged. However, an increase in tech-

nology raises fertility of all agents and thus makes the (∆Pt = 0)-locus shift
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out, pushing the steady state towards smaller bodies and larger populations;

see point SS in Figure 5.

Like in the base-line setting one can allow for a scale effect in technology

production, as in (10) and (11). This would make an initial rise in technol-

ogy generate an expansion in population, thus spurring more technological

progress, and so on. The result is a chain process by which the (∆Pt = 0)-

locus shifts out at an increasingly rapid rate, pushing the steady state down

along the (∆Bt = 0)-locus (cf Figure 5). In that sense, a competition model

can indeed replicate a pattern of declining body mass parallel with explosive

growth in population and technology, just as in the base-line setting and in

the data (see Figure 1).

However, the competition model does not fully replicate the type of grad-

ual and simultaneous rise in population and body mass that characterized

the earlier phase of human evolution in Figure 1. In the base-line model the

economy followed a path of slow and gradual increases in population since

the path stayed close to the (∆Pt = 0)-locus (cf Figure 2). Here, however,

a path close to the (∆Pt = 0)-locus displays rising body mass and falling

population. Intuitively, there is no net food gain as the average agent grows

bigger, only higher metabolic costs. Therefore greater average body mass

leads to lower average fertility and thus to smaller steady state population.

(If the economy instead starts off close to Bt = B and Pt = 0 it would display

an initially too rapid rate of population growth.)

However, a (perhaps more realistic) model where body mass affects food

procurement both in absolute and relative terms can in principle generate the

same gradual and simultaneous rise in population and body mass as seen in

the base-line model.

Non-human species and Cope’s Rule Interestingly, the simultaneous

incline in body mass and decline in population in this type of competition

model may be relevant for other species and eras. Valkenburgh et al. (2004)

document how over the past 50 million years many carnivorous animal species
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native to North America displayed increasing body mass prior to becoming

extinct. Similar to the mechanics of the competition model presented in this

section, their explanation is that selection for large bodies was driven by

the competitive advantage of larger size, known as Cope’s Rule. Given that

energy requirements are greater for bigger agents this can lead to declining

population of the whole species, and even its extinction. In other words,

natural selection can promote bigger bodies because it is associated with

higher reproductive success of the individual agent, but it may nevertheless

result in a population decline (and eventual extinction) of the whole species.

3.1.1 Technology as input in competition

An alternative competition model is one where both technology and body

mass are used in competition. As an extension of (14), let

Yi,t = P
−η
t

·
At + β

µ
γAt +Bi
γAt +Bt

¶¸
, (18)

for some γ ≥ 0; setting γ = 0 brings us back to (14). Note that technology

is not only an input in competition; there is also (as before) a direct food

gain from technological progress, since the average agent procures P−ηt (At+

β) (but there is no food gain for the average agent as average body mass

increases).

With this formulation technological progress functions as an equalizing

force in competition, since it reduces the excess amount of food procured by

big types. Compared to the production function in (14), the implication in

terms of the phase diagrams in Figures 4 and 5 is that increases in technology

here lead to an inward shift of the (∆Bt = 0)-locus. [To see this, use (18) and

(6) and note that ∂ni,t/∂Bi is decreasing in At.] The qualitative predictions

are thus the same as in the previous competition model: rising technology

leads to expanding population and declining body mass. The difference is

that technological progress here directly drives the decline in body mass by

lowering the competitive value of a big body.

23



3.2 Technology and body mass as imperfect substi-

tutes

The production function used in (5) had technology and body mass as per-

fect substitutes. Another formulation is to let these inputs be imperfect

substitutes, using a function exhibiting constant elasticity of substitution:

Yi,t =
[Aρ
t + βBρ

i ]
1
ρ

P η
t

, (19)

where ρ ∈ (0, 1], and ρ = 1 brings us back to (5).11

As before, fertility is given by (6), i.e., ni,t = Yi,t−αBi. In this setting it is
convenient to assume a continuum of types, so that the economy in the limit

is dominated by the body type for which ∂ni,t/∂Bi = 0. Holding technology

constant (denoting it A, without the time subscript) it can be seen that body

mass and population converge to a (locally) stable steady-state equilibrium,

where steady-state body mass (denoted with a superscript ∗) is given by:

B∗ =
·

β

αAρ

¸ 1
1−ρ
. (20)

As seen, if ρ ∈ (0, 1) steady-state body mass falls with technology, A. Two
effects are involved here. First, given that ρ < 1 a rise in technology leads

to an increase in body mass, since there is some complementarity between

technology and body mass. As a second effect, the rise in A tends to decrease

body mass through an increase in population levels and decline in the per-

capita resource base. As long as ρ > 0 the population effect dominates.

Letting ρ → 0 [so that (19) becomes Yi,t = AtB
β
i /P

η
t ] the population and

technology effects cancel, and steady state mean body mass is not affected

by changes in technology.

11An even more general formulation would be:

Yi,t =
h
(Aρ

t + βBρ
i )

σ
ρ + ηLσt

i 1
σ

,

where (recall) Lt = 1/Pt. The formulation in (19) corresponds to σ = 0.
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The mechanics of a model with ρ ∈ (0, 1) would thus be roughly the same
as in the setting where ρ = 1. An economy starting off with a low level of

technology, and with average body mass below B∗ in (20), would see average
body mass grow, approaching B∗. As the composition of the population
shifts toward bigger agents with higher fertility, population levels rise.

If technology were to evolve endogenously, as in (10) and (11), A would

start to grow at the point in time when population comes to exceed the

threshold for technological progress [θ in (11)]. This would lower steady-

state body mass, B∗, and reverse the time trend so that body mass starts to
decline.

3.3 Endogenous resource base

In (4) it was assumed that the resource base is constant and normalized

to one. Now instead let per-capita resources be given by Xt/Pt, where Xt

denotes the resource base in period t. Instead of the formulation in (5),

income is now given by

Yi,t =

µ
Xt
Pt

¶η

[At + βBi] . (21)

A standard way of formulating the dynamics of a resource base takes the

following form:12

Xt+1 = Xt + rXt

·
1− Xt

X

¸
−Ht, (22)

where r is the maximum re-generation rate, X is the carrying capacity, and

Ht is the period-t harvest. For example, if Xt is the total number of living

mammoths, then Ht is the number of mammoths killed; X is the steady state

that Xt would converge to absent any hunting; and r is the maximum growth

12Brander and Taylor (1998) use a continuous-time version of this functional form. The

discrete-time formulation used here, and several variations of it, can be found in many

biology textbooks, such as e.g. Allman and Rhodes (2004).
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rate of the mammoth population (the growth rate absent hunting and given

an initial stock close to zero).

The harvest, Ht, here equals total population, Pt, times average income,

(Xt/Pt)
η [At + βBt], where (recall) Bt is average body mass [see (2)]. Using

(22) we then get a dynamic equation for Xt:

Xt+1 = Xt + rXt

·
1− Xt

X

¸
−Xη

t P
1−η
t [At + βBt] . (23)

Fertility, as before, is given by (6), i.e., ni,t = Yi,t − αBi. Averaging across

agents and using (21) this gives a dynamic equation for population [corre-

sponding to (9) in the base-line setting]:

Pt+1 = X
η
t P

1−η
t [At + βBt]− αPtBt. (24)

There are now four state variables: Pt, Bt, At, and Xt. The dynamics for Xt

and Pt are given by (23) and (24), respectively; and the dynamics for At by

(10) and (11), like before.

To find the dynamics for Bt recall (6) again and use (21) to see that:

ni,t =

µ
Xt
Pt

¶η

At +Bi

·
β

µ
Xt
Pt

¶η

− α

¸
. (25)

As in the base-line setting, fertility is linear in body mass. If ∂ni,t/∂Bi > 0

big types have the reproductive advantage and expand their fraction of the

population over time, and vice versa if ∂ni,t/∂Bi < 0. As seen from (25), the

sign of ∂ni,t/∂Bi depends on the population-to-resource ratio, Pt/Xt. If this

ratio exceeds (falls below) (β/α)1/η average body mass decreases (increases)

over time. In other words, body mass declines in densely populated and

resource scarce environments; comparing (25) to (7) it is seen that the base-

line model amounts to the special case where Xt = 1 in all periods.

A useful approach to understand the dynamics is to first treat technology

as exogenous (similarly to Sections 3.1 and 3.2, now denoted just A, without

the time subscript). One can then examine how steady state levels (again de-

noted with a superscript ∗) of population and body mass change in response
to exogenous changes in technology.
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Proposition 4 Consider an economy where income is given by (21), re-

source dynamics by (23), and fertility by (6). Assume that there are two

body types, B < B, and that technology is constant at some level A. If no

type becomes extinct in any (finite) period, the economy converges to a steady

state where average body mass, B∗, is given by

B∗ =

(
B if A < β/α

B if A > β/α
. (26)

The proof is given in Section A.3.1 of the appendix. In the knife-edge

case when A = β/α it can be seen that B∗ would equal something between
B and B. (The condition that no type becomes extinct serves to rule out

“collapsed” paths, where body mass is stuck at B or B.)

Proposition 4 implies that letting technology expand exogenously gener-

ates a shift in steady-state body mass, from B to B, as A comes to exceed

β/α. Now think about the dynamics. If the initial levels of population and

body mass are low, and resources abundant, the reproductive advantage lies

with the big types (as long as [Xt/Pt]
η > α/β). Moreover, it can be deduced

that population is expanding (as long as [Xt/Pt]
η > [1 + αBt]/[A + βBt]).

Initially, body mass and population thus grow in tandem.

Moreover, if technology were to evolve endogenously following (10) and

(11) it can be understood how technology would start to grow with positive

probability as population comes to endogenously reach the threshold, θ in

(11). This spurs population growth and as the population-to-resource ratio

exceeds (β/α)1/η, the reproductive advantage shifts to small types. The

mechanics are thus not too different from the case with a fixed resource

base.13

13One difference in this setting, compared to the base-line setting, is that perpetual

growth in technology and population here cannot be sustained. It can be seen that steady-

state population becomes zero when A = rη(1+ αB∗)1−η − βB∗. However, the economy
will not converge to a steady state with zero population, since technology stops growing

when population becomes too small [recall (11) again].
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4 Conclusions

We have presented a model of endogenous growth in population and tech-

nology, together with natural selection among body types. The model can

explain why humans were becoming bigger up until 50,000 years ago, and

since then have been declining in size. The central mechanism driving these

results is that technological progress does not in itself affect the relative re-

productive advantage of big and small types, but it does bring with it denser

population and depletion of resources and thereby shifts the reproductive

advantage to smaller body types.

This story is not meant to be an exhaustive explanation of human physi-

ological history but may serve as a starting point for thinking about related

mechanisms at work between the same variables. For example, it seems that

changes in body mass over time reflect changes in human habitats. The fossils

of the largest humans over the past two million years have been found pre-

dominantly (but not only) in colder regions (Ruff 2002). The reason is that

heat saving becomes more important in colder climates, which works better

with bigger bodies and more “cubic” forms, i.e., larger trunks and shorter

limb segments, known as Allen’s and Bergmann’s rules, respectively.14 How-

ever, this does not really explain the decline in body mass over the last 50,000

years.

Body mass may also have declined as a way to rapidly increase the brain-

to-body (encephalization) ratio and thus intelligence (Kappelman 1996, 1997;

Robson and Kaplan 2003). Up until about 50,000 years ago encephalization

had increased as brains and bodies expanded in tandem. One may conjec-

14Think of the human body as a cube with side x, so that its volume equals x3 and its

surface 6x; the volume-to-surface ratio is thus given by x2/6. The higher is this ratio the

lower is the heat loss, so larger bodies (with higher x) are more beneficial in cold climates.

This is Allen’s rule. Likewise, if the body is a rectangle of fixed volume, V , and variable

sides x, y, and z, then it can be seen that the volume-to-surface ratio is maximized when

x = y = z = V 1/3, that is, when the rectangle is a cube. This is Bergmann’s rule. See

Jurmain et al. (2000, pp. 423-426) for a textbook overview.
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ture that selective pressures for intelligence then increased, due to denser

populations making cooperation more important, more advanced technolo-

gies being developed, and/or language evolving around this time (Diamond

1992). This could have increased the reproductive value of high encephaliza-

tion, but it is not clear why rising encephalization would come with declining

body mass only over the last phase of development. Also, the examples of

island dwarfism among other species (cf Section 1.1) suggest that declining

body mass can occur also without the development of human-like levels of

intelligence.

Other hypotheses are more speculative. One can be labelled human self-

taming.15 The idea is that humans evolved reduced body mass as they be-

came hard-wired for more peaceful, cooperative behavior, just like e.g. wolves

evolved into more peaceful dogs. Notably dogs resemble puppy wolves, hav-

ing e.g. floppier ears, shorter snouts, and smaller size, and these physical

characteristics and the associated non-aggressive behavior are closely genet-

ically linked. For example, attempts to breed tamer foxes have resulted in

foxes with similar physical characteristics as dogs (Ridley 2003).16 Selecting

for one developmentally immature trait, such as less aggressive behavior, may

bring other juvenile features along, a smaller body being one of them. Just

as dogs have evolved from wolves through natural selection to live peacefully

with humans, humans themselves may have evolved to become more “domes-

ticated” as we have begun to live closer to other humans, i.e., as population

has grown denser. Again, however, this does not really explain the inversely

U-shaped time trend in body mass.

15This idea has some common elements with unpublished work by Richard Wrangham

and co-authors, as cited by Ridley (2003, pp. 31-37). The discussion here is based on

Ridley.
16The biochemical triggers involved are called gene promoters. They determine when

to switch what genes on and off. For example, one genetic cause of less aggressive/more

social behavior lies in how long a certain section of the brain disinhibiting aggression

(called “area13”) is allowed by the gene promoters to develop. See Ridley (2003) for a

more detailed discussion.
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Aside from the body trends discussed here, there are a number of inter-

esting related issues which could be worth studying. For example, it seems

that human body mass reached a global minimum a couple of centuries ago.

Since then humans have grown bigger and taller mostly in response to im-

proved nutrition, as technological progress has come to outpace population

growth. However, also over this shorter time period natural selection may

have played a role in shaping human bodies. For example, Diamond (2003)

suggests that food history can explain geographical variation in obesity and

diabetes today. Europeans experienced improved nutritional supply earlier

than the native populations in other parts of the world. This lowered the

reproductive benefits of genes which enables the body to store fat, so-called

“thrifty genes.” Such genes improve the chance of surviving starvation but

also make the carrier more susceptible to obesity and diabetes. When food

supply improved in Europe this reduced the reproductive advantage of thrifty

genes; other populations went through this transition much later, if at all.

The model presented here assumes that in any given period the existing

technology is available to all agents. This makes sense in a world where

tools and weapons are very crude and simple, like most of the early ones

listed in Table 3. However, as technological progress gradually picked up

pace some time after the agricultural revolution skills may have started to

become more important to master new technologies. This may have tilted the

reproductive advantage to agents who were either genetically predisposed to

higher intelligence; or whose preferences were such that they chose to have

fewer children but educate each child better, thus raising the income and

fertility of the next generation. Such quality-quantity substitution may have

happened over the most recent millennia, and would fit with the theory of

Galor and Moav (2002).
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A Appendix

A.1 The base-line model

A.1.1 Proof of Proposition 1

Part (a): the (∆Pt = 0)-locus Consider first the segment of the phase

diagram where Pt < A
1/η
0 ; this in turn implies that Pt < (β/α)1/η (since

A0 < β/α). The first of these two inequalities implies that A0/P
η
t > 1; the

latter implies that Bt(β − αP η
t ) > 0 (since Bt > 0). From (9) this is seen to

imply that Pt+1 > Pt; thus population is always growing when Pt < A
1/η
0 .

Consider next the segment of the phase diagram where A
1/η
0 < Pt <

(β/α)1/η. Using (9) we see that Pt+1 T Pt holds when Bt T (P η
t −A0)/(β −

αP η
t ), which is (12). The (∆Pt = 0)-locus in Figure 2 is given by (12) holding

with equality.

Consider next the segment of the phase diagram where (β/α)1/η < Pt <

([β + A0/Bt]/α)
1/η. These inequalities imply that A0/P

η
t < 1, and Bt(β −

αP η
t ) < 0, so using (9) it is seen that Pt+1 < Pt; thus population is decreasing

in this region of the phase diagram.

Note, for completeness, that Pt > ([β + A0/Bt]/α)
1/η would imply nega-

tive fertility (or fertility being constrained to zero) and thus the population

becoming extinct.

Part (b): the (∆Bt = 0)-locus When all agents belong to the same body

type the composition cannot change. When there are only two body types,

B and B, Bt must thus be constant whenever either body type dominates

the population, that is, when Bt = B or Bt = B. Mean body mass is

also constant when ∂ni,t/∂Bi = 0. Using (7), this is seen to hold whenever

β − αP η
t = 0, which gives (13).

Part (c) From (12) and (13) it is seen that the denominator of (13) is zero

if ∆Bt = 0 for Bt ∈ (B,B). Thus, the only steady states that can exist
must be such that Bt = B or Bt = B. These steady states do exist since
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∆Pt = ∆Bt = 0 at: (Bt, Pt) = (B,P ), where P = [(A0 + βB)/(1 + αB)]1/η;

and (Bt, Pt) = (B,P ), where P =
£
(A0 + βB)/(1 + αB)

¤1/η
. Since B < B,

and [(A0 + βB)/(1 + αB)]1/η is increasing in B for A0 < β/α, it must hold

that P < P . Q.E.D.

A.1.2 Proof of Proposition 2

Use (9) to see that if Pt grows at a sustained constant rate, and thus Bt ap-

proaches B, then fertility (and thus population growth) approaches At/P
η
t −

αB. For this growth rate to be constant, At/P
η
t must be constant. Since

At+1 = (1 + g)At it follows that P
η
t+1 = (1 + g)P η

t , or Pt+1 = (1 + g)
1/ηPt;

this gives At/P
η
t = (1 + g)

1/η + αB. Q.E.D.

A.2 A competition model

A.2.1 Proof of Proposition 3

Part (a): the (∆Pt = 0)-locus Treating technology, A, as fixed, and

using Pt+1 = Ptnt, (2) and (15), it is seen that

Pt+1 = Ptnt = Pt

µ
A

P η
t

+
β − αBtP

η
t

P η
t

¶
. (27)

Setting Pt+1 = Pt in (27) we get Bt = (A+ β)/(αP η
t )− (1/α), which is (16).

Likewise, when Bt > (<)(A + β)/(αP η
t ) − (1/α) it is seen from (27) that

Pt+1 < (>)Pt.

Part (b): the (∆Bt = 0)-locus As in Section A.1.1 of this appendix,

we note that Bt+1 = Bt either when one single type dominates the whole

population (so that, in the two-type case, Bt = B or Bt = B); or when

∂ni,t/∂Bi = 0, which when using (15) gives (17).

Part (c) From (16) and (17), it is seen that ∆Pt = ∆Bt = 0 when

(Bt, Pt) = (B,P ), where P = [(A+ β)/(1 + αB)]1/η; and (Bt, Pt) = (B,P ),
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where P =
£
(A+ β)/(1 + αB)

¤1/η
. Since B < B, and [(A+ β)/(1 + αB)]1/η

is decreasing B, it must hold that P > P .

Part (d) If a steady state where Bt ∈ (B,B) exists, then (16) and (17) say
that both Bt = β/(αP η

t ) and Bt = (A+β)/(αP η
t )−(1/α) must hold. Solving

for Bt and Pt gives Pt = A1/η and Bt = β/(αA); and β/(αA) ∈ (B,B) is
equivalent to A ∈ (β/(αB), β/(αB)).Q.E.D.

A.3 Endogenous resource base

A.3.1 Proof of Proposition 4

At any given B∗, steady-state resource and population levels are given by
setting Xt+1 = Xt = X

∗ and Pt+1 = Pt = P ∗ in (23) and (24), and solving
for X∗ and P ∗. From (23) we get

P ∗ =
·
A+ βB∗

1 + αB∗

¸ 1
η

X∗, (28)

Next use (25) and (28) to note that large types have the reproductive ad-

vantage (∂ni,t/∂Bi > 0) if (X
∗/P ∗)η = (1 + αB∗)/(A + βB∗) > α/β, which

is seen to amount to A < β/α; vice versa, small types have the reproductive

advantage if A > β/α. This gives the expression for steady-state average

body mass, B∗, in (26). Q.E.D.
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Figure 1: Trends in human body mass and total world population. Sources:

for population Kremer (1993); for body mass, see Table 1 (the times are

chosen as the mid points of the periods reported).
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Figure 2. Base-line model dynamics with non-growing technology.
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Figure 6: Simulated time path for average body mass across types, Bt.



Figure 7: Simulated time path for average fertility, nt.



Figure 8: The solid line shows the simulated time path for population before

the take-off in technological progress. The dotted line indicates θ, the critical

level of population above which technological progress becomes possible.



Sample
Temporal range

(thousand years ago)

Mean body mass

(Kg.)

Living worldwide - 58.2

Late Upper Paleaolithic 10-21 62.9

Early Upper Paleolitic 21-35 66.6

Late archaic H. Sapiens 36-75 76.0

Skhul-Qafzeh 90 66.6

early Late Pleistocene 100-150 67.7

late Middle Pleistocene 200-300 65.6

middle Middle Pleistocene 400-550 67.9

late Early to early

Middle Pleistocene
600-1,150 58.0

Early Pleistocene 1,200-1,800 61.8

Table 1: Body-mass data. The numbers refer to the mean of the estimated

body weights of fossil samples from the periods indicated. Source: Ruff et

al. (1997, Table 1).



Time period
No. of innovations

as listed in Table 3

Rate of progress

(% change per 1000 years)

4,000,000 to

100,000 B.C.
6 -

100,000 to

40,000 B.C.
4 0.86%

40,000 to

10,000 B.C.
20 2.34%

10,000 to

8,000 B.C.
16 73%

Table 2: Early rates of technological progress. We assume an initial stock

of zero innovations by 4 million years B.C. Source: Nolan and Lenski (1999,

Table 5.1)



Time period List of innovations

4,000,000 to

100,000 B.C.

Hand ax Wooden spear

Use of fire Colored pigments

Shelters Fire-hardened spear point

100,000 to

40,000 B.C.

Bone for tools Skin clothing

Handles on tools Harpoon heads

40,000 to

10,000 B.C.

Spear thrower Bow and arrow

Lamps Pins and awls

Fish gorgets Cord

Needles with eyes Antler hammers

Shovels and scoops Mattocks

Stone saws Graving tools

Spoons Stone ax with handle

Jewelry Pestles and grinding slabs

Separate handles Musical instruments

Boats Domestication of dogs

10,000 to

8,000 B.C.

Beer Fishhooks

Fish traps Fishnets

Adzes Sickles

Plant cultivation Domestication of sheep

Basketry Cloth

Grinding equipment Leather-working tools

Paving Sledge

Ice picks Combs

Table 3: Early technologies. Source: Nolan and Lenski (1999, Table 5.1).



Parameter β α η θ g

Value 0.9 0.8986 0.07 1.009 0.0003

Parameter P0 A0 z0 B B

Value 1.00805 1 0.0001 0.8 0.6

Table 4: Parameter values.


