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Deriving linear fertility

This setting shows how a functional form where fertility is linear in body mass can be
derived from fundamentals. Agents have two ways to procure food: gathering plants (or
hunting small prey); and hunting (big) animals. The former activity requires no energy or
bodily input but depends on the level of technology; the latter requires no technology but
relies only on body mass and energy (effort) spent.
Income from food gathering equals Lδ

tAt, where δ ∈ (0, 1), and (like in the paper) Lt is
resources (or land) per agent and At is technology.
To model big-prey hunting, let ei,t denote (physical) effort spent in hunting in period t

by an agent of body type i. Food procured in this activity equals Deγi,tL
ω
t Bi, where D > 0,

ω ∈ (0, 1), γ ∈ (0, 1), and Bi (recall) is body mass. Hunting also consumes an amount of
energy which is proportional to the body mass of the hunter, and given by ei,tBi.
On top of energy used for hunting, bodies require energy for maintenance, which is given

by αBi.
The total energy surplus is used for reproduction. This gives fertility, ni,t, as the sum

of food procured in hunting and gathering, minus energy required in hunting and for body
maintenance. That is,

ni,t = L
δ
tAt +De

γ
i,tL

ω
t Bi − [α + ei,t]Bi. (1)

Agents choose effort exerted in hunting, ei,t, to maximize fertility in (1). This gives optimal
ei,t as

ei,t = (γDL
ω
t )

1
1−γ . (2)

Substituting optimal ei,t back into the expression for ni,t in (1) and working the algebra,
gives

ni,t = Lδ
tAt +D (γDL

ω
t )

γ
1−γ Lω

t Bi −
h
α + (γDLω

t )
1

1−γ
i
Bi (3)

= Lδ
tAt +D

1
1−γ γ

γ
1−γ (1− γ)L

ω
1−γ
t Bi − αBi.

As in the base-line setting, let total resources be normalized to one; then resources per agent
is Lt = 1/Pt. Then we can write fertility in (3) as

ni,t =
At
P δ
t

+
βBi

P
ω/(1−γ)
t

− αBi, (4)

where β = D
1

1−γ γ
γ

1−γ (1− γ).
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This indeed resembles the expression for fertility, ni,t, in the paper. In particular, if
δ = ω/(1−γ) it is seen that (4) above boils down to Eq. (7) in the paper, with η replaced by
δ. The intuition is exactly the same as in the existing setting: as population rises the value
of a big body declines due to falling productivity of the body-intensive activity, hunting.
Note also from the expression for optimal hunting effort in (2) that rising population

density (leading to lower Lt) induces agents to allocate less effort to (big-prey) hunting and
rely more on gathering (or small-prey hunting).
The qualitative results are unchanged if δ < ω/(1 − γ), which would be the case e.g. if

δ = ω. The only difference is that the equation for the (∆Pt = 0)-locus (in the technologically
stagnant phase) changes to

Bt = P
ω
1−γ−δ
t

Ã
P δ
t −A0

β − αP
ω/(1−γ)
t

!
. (5)

instead of Eq. (12) in the paper. As long as δ < ω/(1− γ) the slope is positive, as in Figure
2 in the paper, and the configuration thus the same.

Endogenous natural resource base

In this model income is given by

Yi,t = L
η
t [A + βBi] =

µ
Xt
Pt

¶η

[A+ βBi] . (6)

(Note that technology, A, is treated as constant.)
The dynamic equation for Xt becomes:

Xt+1 = Xt + rXt

·
1− Xt

X

¸
−Xη

t P
1−η
t [A+ βBt] , (7)

where Xη
t P

1−η
t [A+ βBt] is the amount harvested.

Fertility is given by income minus subsistence: ni,t = Yi,t − αBi. Using (6) fertility thus
becomes:

ni,t =

µ
Xt
Pt

¶η

A +Bi

·
β

µ
Xt
Pt

¶η

− α

¸
. (8)

This gives a dynamic equation for population:

Pt+1 = X
η
t P

1−η
t [A+ βBt]− αPtBt. (9)

Treating technology as constant there are now three state variables: Pt, Bt, and Xt. The
dynamics for Xt and Pt are given by (7) and (9), respectively. The dynamics of Bt is given by
noting that big types have the reproductive advantage (∂ni,t/∂Bi > 0), and Bt is increasing
over time, when the resource-to-population ratio, Xt/Pt, exceeds the threshold (α/β)

1/η, and
vice versa when this ratio falls below the threshold.
Steady-state levels are denoted with a superscript ∗.
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At any given B∗, steady-state resource and population levels are given by setting Xt+1 =
Xt = X

∗ and Pt+1 = Pt = P ∗ in (7) and (9), and solving for X∗ and P ∗. From (7) we get

P ∗ =
·
A + βB∗

1+ αB∗

¸ 1
η

X∗, (10)

The resource-to-population ratio thus equals {(1+αB∗)/(A+βB∗)}1/η in steady state. Next
use (8) and recall that big (small) types dominate if ∂ni,t/∂Bi > (<)0. If the resource-to-
population ratio exceeds (α/β)1/η the reproductive success is greater for the big type [since
∂ni,t/∂Bi is then positive; see (8)]. This amounts to {(1+ αB∗)/(A+ βB∗)}1/η > (α/β)1/η,
or (after a little algebra) A < β/α. Vice versa, if A > β/α the small type has higher fertility.
This implies that steady-state average body size, B∗, is given by

B∗ =
½
B if A < β/α
B if A > β/α

, (11)

(and B∗ can be anything between B and B if A = β/α).
Using (9) gives

P ∗ =
·

r

A+ βB∗

¸ 1
1−η
·
1− X

∗

X

¸ 1
1−η
X∗. (12)

where (recall) B∗ is given by (11). Equalizing (10) and (12), and solving for X∗, we get:

X∗ = X

"
1− [A+ βB∗]

1
η

r(1+ αB∗)
η

1−η

#
, (13)

which is decreasing in A, holding fixed B∗. Using (10) and (13), we get an expression for P ∗,
not involving X∗:

P ∗ = X

Ã
1− [A + βB∗]

1
η

r[1+ αB∗]
1−η
η

!·
A + βB∗

1+ αB∗

¸ 1
η

. (14)

From (14) it is seen that P ∗ is non-monotonic in A at any given level of B∗, reflecting
two counteracting effects that technological progress has on steady-state population: higher
technology means that more resources can be harvested, and thus a larger population at a
given resource base; but it also means more resource depletion and thus fewer resources to
harvest, meaning lower population.
Note also from (13) and (14) that X∗ = P ∗ = 0 if A = rη(1+ αB∗)1−η − βB∗.

CES production

In this setting technology and body mass are imperfect substitutes and food procurement
is given by a function exhibiting constant elasticity of substitution:

Yi,t =
[Aρ + βBρ

i ]
1
ρ

P η
t

, (15)
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Technology, A, is treated as constant.
There is a continuum of body types, from B and B. Using ni,t = Yi,t − αBi and the

implication that in steady state the economy is dominated by the body type for which
∂ni,t/∂Bi = 0, or ∂Yi,t/∂Bi = α, we see that in steady state the average body size, B∗, is
given by:

(P ∗)−η
µ
1

ρ

¶
[Aρ + β (B∗)ρ]

1−ρ
ρ βρ (B∗)ρ−1 = α, (16)

where P ∗ is steady-state population size. Again using (15), and the fact that fertility of the
type which dominates in steady state must equal unity, we can write:

1 = (P ∗)−η [Aρ + β (B∗)ρ]
1
ρ − αB∗. (17)

These two equations, (16) and (17), can be solved for B∗ and P ∗. The algebra is quite
cumbersome; what follows is the route we have found easiest. First rewrite (16) as:

[Aρ + β (B∗)ρ]
1
ρ =

µ
α (P ∗)η

β

¶ 1
1−ρ
B∗, (18)

or, raising both sides to ρ and rearranging:µ
α (P ∗)η

β

¶ ρ
1−ρ
− β =

µ
A

B∗

¶ρ

. (19)

We then use (17) to write

1+ αB∗ = (P ∗)−η [Aρ + β (B∗)ρ]
1
ρ

= (P ∗)−η
³
α(P ∗)η

β

´ 1
1−ρ
B∗

= (P ∗)η(
1−(1−ρ)
1−ρ )

³
α
β

´ 1−(1−ρ)
1−ρ

³
α
β

´
B∗

=
³
α(P ∗)η

β

´ ρ
1−ρ
³
αB∗
β

´
(20)

where the second equality uses (18). We can rewrite (20) as

1 =
³
αB∗
β

´·³
α(P∗)η

β

´ ρ
1−ρ − β

¸
=
³
αB∗
β

´ ¡
A
B∗
¢ρ (21)

where the second equality uses (19). This can be solved for B∗ to give

B∗ =
·

β

αAρ

¸ 1
1−ρ
. (22)

Substituting (22) back into (19) gives steady state population:

P ∗ =


µ
β

α

¶"µ
αA

β

¶ ρ
1−ρ
+ β

# 1−ρ
ρ


1
η

. (23)
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