Supplement to
Long-Run Trends in Human Body Mass

by
Nils-Petter Lagerlof

Deriving linear fertility

This setting shows how a functional form where fertility is linear in body mass can be
derived from fundamentals. Agents have two ways to procure food: gathering plants (or
hunting small prey); and hunting (big) animals. The former activity requires no energy or
bodily input but depends on the level of technology; the latter requires no technology but
relies only on body mass and energy (effort) spent.

Income from food gathering equals LA, where § € (0,1), and (like in the paper) L, is
resources (or land) per agent and A; is technology.

To model big-prey hunting, let e;; denote (physical) effort spent in hunting in period ¢
by an agent of body type ¢. Food procured in this activity equals DeZtL;"Bi, where D > 0,
w e (0,1), v € (0,1), and B; (recall) is body mass. Hunting also consumes an amount of
energy which is proportional to the body mass of the hunter, and given by e; ;B;.

On top of energy used for hunting, bodies require energy for maintenance, which is given
by aB;.

The total energy surplus is used for reproduction. This gives fertility, n;+, as the sum
of food procured in hunting and gathering, minus energy required in hunting and for body
maintenance. That is,
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Agents choose effort exerted in hunting, e;;, to maximize fertility in (1). This gives optimal
€it as
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Substituting optimal e;; back into the expression for n;; in (1) and working the algebra,
gives

ni; = LA+ D(yDL¥)T5 [¥B; — |a + (yDL¥)T7 | B; (3)
= LSA, + DT5yT5(1 —4)L] " B; — aB;.

As in the base-line setting, let total resources be normalized to one; then resources per agent
is Ly = 1/P,. Then we can write fertility in (3) as
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where § = Dﬁfyl_}v(l — ).



This indeed resembles the expression for fertility, n;,, in the paper. In particular, if
6 =w/(1—7) it is seen that (4) above boils down to Eq. (7) in the paper, with 1 replaced by
0. The intuition is exactly the same as in the existing setting: as population rises the value
of a big body declines due to falling productivity of the body-intensive activity, hunting.

Note also from the expression for optimal hunting effort in (2) that rising population
density (leading to lower L;) induces agents to allocate less effort to (big-prey) hunting and
rely more on gathering (or small-prey hunting).

The qualitative results are unchanged if 6 < w/(1 — ), which would be the case e.g. if
6 = w. The only difference is that the equation for the (AP, = 0)-locus (in the technologically
stagnant phase) changes to
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instead of Eq. (12) in the paper. Aslong as § < w/(1 — ) the slope is positive, as in Figure
2 in the paper, and the configuration thus the same.

Endogenous natural resource base

In this model income is given by

X n
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(Note that technology, A, is treated as constant.)
The dynamic equation for X; becomes:

X _
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where X/'P}~"[A + 3B,] is the amount harvested.
Fertility is given by income minus subsistence: n;; = Y;; — aB;. Using (6) fertility thus

becomes:
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This gives a dynamic equation for population:
Py = X{P/""[A+ BB] — aP;B,. (9)

Treating technology as constant there are now three state variables: P;, B;, and X;. The
dynamics for X; and P, are given by (7) and (9), respectively. The dynamics of B, is given by
noting that big types have the reproductive advantage (On;;/0B; > 0), and B is increasing
over time, when the resource-to-population ratio, X;/P;, exceeds the threshold (a//3)'/", and
vice versa when this ratio falls below the threshold.

Steady-state levels are denoted with a superscript .



At any given B*, steady-state resource and population levels are given by setting X;,; =
Xy =X*and Pyy = P = P*in (7) and (9), and solving for X* and P*. From (7) we get

1
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The resource-to-population ratio thus equals {(1+aB*)/(A+BB*)}/" in steady state. Next
use (8) and recall that big (small) types dominate if On;/0B; > (<)0. If the resource-to-
population ratio exceeds (a/3)*/" the reproductive success is greater for the big type [since
On;;/OB; is then positive; see (8)]. This amounts to {(1 + aB*)/(A + 8B*)}¥/" > (a/B)}/",
or (after a little algebra) A < 3/a. Vice versa, if A > [/« the small type has higher fertility.
This implies that steady-state average body size, B*, is given by
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(and B* can be anything between B and B if A = 3/a).
Using (9) gives
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where (recall) B* is given by (11). Equalizing (10) and (12), and solving for X*, we get:
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which is decreasing in A, holding fixed B*. Using (10) and (13), we get an expression for P*,
not involving X*:

P 1—[A+63T; lA+6BWE‘ (14)
rll4aB @ ) L1+aB

From (14) it is seen that P* is non-monotonic in A at any given level of B* reflecting
two counteracting effects that technological progress has on steady-state population: higher
technology means that more resources can be harvested, and thus a larger population at a
given resource base; but it also means more resource depletion and thus fewer resources to
harvest, meaning lower population.

Note also from (13) and (14) that X* = P* =0 if A =r"(1+ aB*)'"" — 3B*.

CES production

In this setting technology and body mass are imperfect substitutes and food procurement
is given by a function exhibiting constant elasticity of substitution:
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Technology, A, is treated as constant.

There is a continuum of body types, from B and B. Using n;; = Y;; — aB; and the
implication that in steady state the economy is dominated by the body type for which
on;/0B; = 0, or 9Y;;/0B; = «, we see that in steady state the average body size, B*, is
given by:
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where P* is steady-state population size. Again using (15), and the fact that fertility of the
type which dominates in steady state must equal unity, we can write:

1= (P*) " [A° + B (B*)]» — aB". (17)

These two equations, (16) and (17), can be solved for B* and P*. The algebra is quite
cumbersome; what follows is the route we have found easiest. First rewrite (16) as:

[m+ﬁwwﬁ=(ﬂgwfﬁw, (18)

or, raising both sides to p and rearranging:
d(PYNT s (AY (19)
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where the second equality uses (18). We can rewrite (20) as
1= (QTJ?*> [(%)ﬁ _5} (21)
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where the second equality uses (19). This can be solved for B* to give

We then use (17) to write
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Substituting (22) back into (19) gives steady state population:
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