Final Exam for Econ 1530 Sections C and D York University 20 December 2005

First name:

Last name:

SID number:

Instructions: Write your name and SID number above; circle your answer below, *and* fill out the same answer on the bubble sheet (as well as SID number and name).

Problem 1. A quantity of K increases by 1% per year (with annual compounding). After approximately how many years has the quantity increased to 2K?

(a) 70 years

(b) 20 years

(c) 2 years

(d) 1/2 a year

Problem 2. Let $S = \sum_{i=1}^{n} i$. Then S equals: (a) n(n-1)/2(b) n(n+1)/2(c) n

(d) none of the above

Problem 3. The graph of the linear function f(x) passes through the points $(x_1, y_1) = (0, 2)$ and $(x_2, y_2) = (1, 1)$. Which is the function? (a) f(x) = 2 - x(b) $f(x) = \alpha - x$ (c) f(x) = 1 - x(d) none of the above

Problem 4. If $f'(x) \ge 0$ and $f''(x) \le 0$, what of the below describes f? (a) f is increasing and convex (b) f is decreasing and concave (c) f is decreasing and convex (d) f is increasing and concave

Problem 5. The function f(x) is such that f'(x) = -2 for all x, and passes through the point $(x_1, y_1) = (1, 4)$. Which is the function? (a) f(x) = 1 - x(b) $f(x) = -x^2$ (c) f(x) = 2(3 - x)(d) none of the above **Problem 6.** Let $f(x) = \sqrt{x}$. Which of the below gives a linear approximation of f(x) about x = 1?¹ (a) $f(a) + \sqrt{a}(x - a)$ (b) (1 - x)/2(c) (1 + x)/2(d) none of the above

Problem 7: Let F(x) = G(y). Which one of the below options gives $\frac{dy}{dx}$? (a) $\frac{dy}{dx} = \frac{G'(y)}{F'(x)}$ (b) $\frac{dy}{dx} = -\frac{F'(y)}{G'(x)}$ (c) $\frac{dy}{dx} = \frac{F'(x)}{G'(y)}$ (d) none of the above

Problem 8: Let $f(x) = x(\ln x - 1)$. Which of the below gives the second derivative of f(x)?

(a) $f''(x) = \frac{1}{(1-x)^2} \left(\frac{1-x}{x} + \ln x \right)$ (b) $f''(x) = \frac{1}{x}$ (c) $f''(x) = \frac{-1}{x^2}$

(d) none of the above

Problem 9: Let $U(C) = -e^{-\gamma C}$, where $\gamma > 0$ is a constant. What below gives $A(C) = \frac{-U''(C)}{U'(C)}$? (a) $A(C) = 1/(1 - \gamma C)$ (b) $A(C) = \gamma/(1 - \gamma C)$ (c) $A(C) = \gamma$ (d) none of the above

Problem 10: Let $F(x) = 1 - e^{-ax}$, where a > 0 is a constant. Let $G(z) = F'(\ln z)$. Which of the below gives G'(z)? (a) $G'(z) = -a^2 z^{-(1+a)}$ (b) $G'(z) = a z^{-a}$ (c) $G'(z) = -a^2$ (d) none of the above

Problem 11: Let $f(x) = \frac{1-\sqrt{1-\gamma x}}{x}$, where $\gamma > 0$ is a constant. Which one of the below options gives $\lim_{x\to 0} f(x)$? (a) γ (b) $1/\gamma$ (c) $\gamma/2$ (d) none of the above

¹Recall that a linear approximation of f(x) about x = a is given by f(a) + f'(a)[x - a].

Problem 12: Let the function $f(x) = -(1+x)^2$ be defined on the interval [0, 1]. Which of the below gives the maximum point for f(x)? (a) x = -1(b) x = 0(c) x = 1

(d) none of the above

Problem 13: Figure 1 shows the graph of f'(x). Which of the below statements is the correct one? [Note that the graph shows f'(x), not f(x).] (a) x = 16 is a local maximum point for f(x)

(b) x = 0 is a local maximum point for f(x)

(c) x = 20 is a local minimum point for f(x)

(d) x = 8 is a local maximum point for f(x)

Problem 14: Let $f(x) = 2x - \frac{x^2}{2}$. Which of the below gives the maximum point for f(x)? (a) x = 2

- (b) x = 1
- (c) x = 0
- (d) none of the above

Problem 15: Let the function f(x) be such that f''(a) = -2 and f'(a) = 0 for some a. Which of the below is true?

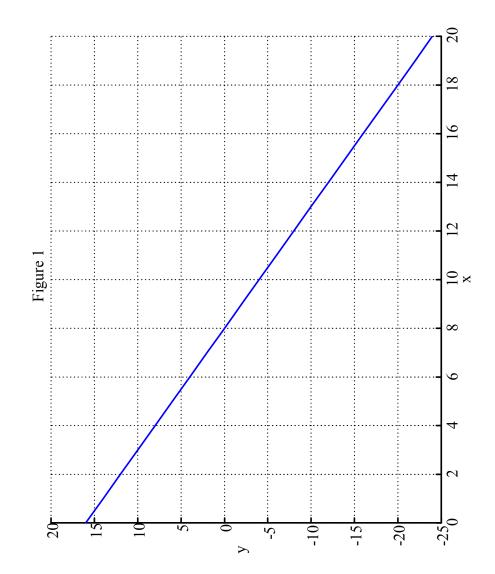
(a) x = 0 is a local maximum point for f(x)(b) x = 0 is a local minimum point for f(x)(c) x = a is a local maximum point for f(x)(d) x = -2 is a local minimum point for f(x)

Problem 16: Let $f(x) = e^x - x$. Which of the below gives the minimum point for f(x)?

- (a) x = 1
- (b) x = e
- (c) x = 0
- (d) none of the above

Problem 17: Let $f(x) = -x + \ln x$. Which one of the below statements is correct?

- (a) x = e is a maximum point for f(x)
- (b) x = 1 is a maximum point for f(x)
- (c) x = 1 is a minimum point for f(x)
- (d) none of the above


Problem 18: Which of the below gives $\int x^{a-1} dx$ for $a \neq 0$? (C is a constant.)

(a) $x^{a}/a + C$ (b) $(a + x)^{a-1} + C$ (c) $(a - 1)x^{a-2} + C$ (d) none of the above **Problem 19:** Which of the below equals $\int_0^1 e^x (1+x) dx$? *Hint:* what is the derivative of xe^x ?

- (a) 0
- (b) 1
- (c) 23
- (d) none of the above

Problem 20: Let $G(a) = \int_{1}^{1+a} 2(x-1)dx$. Which of the below gives G'(a)? (a) G'(a) = 0

- (b) $G'(a) = a \ln a$
- (c) G'(a) = 2a
- (d) none of the above

Solutions

- Problem 1: (a)
- Problem 2: (b)
- Problem 3: (a)
- Problem 4: (d)
- Problem 5: (c)
- Problem 6: (c)
- Problem 7: (c)
- Problem 8: (b)
- Problem 9: (c)
- Problem 10: (a)
- Problem 11: (c)
- Problem 12: (b)
- Problem 13: (d)
- Problem 14: (a)
- Problem 15: (c)
- Problem 16: (c)
- Problem 17: (b)
- Problem 18: (a)
- Problem 19: (d) Right answer is e
- Problem 20: (c)