Final Exam – Econ 4020 11 December 2009 Department of Economics York University

Part A: do all three problems below

1. The Solow model [10 marks]

Consider a Solow model, where output (Y) is produced with a neoclassical production function, Y = F(K, AL), which exhibits constant returns to scale, meaning that

$$\lambda F(K, AL) = F(\lambda K, \lambda AL)$$

for all $\lambda > 0$. The notation is standard and as usual we let lower-case variables denote per-efficient-worker units, so that y = Y/(AL), k = K/(AL), etc.

(a) Show that there exists an intensive-form production function. That is, show that there exists a function, f, such that y = f(k) = F(k, 1). [4 marks]

(b) Firms choose K and L to maximize profits, π , given by $\pi = F(K, AL) - rK - wAL$, where w is the wage rate and r is the real interest rate. Use the profit maximization problem to find an expression for r in terms of (some or all of) f(k), f'(k), and k. [3 marks]

(c) Use the profit maximization problem described under (b) to find an expression for w in terms of (some or all of) f(k), f'(k), and k. [3 marks]

2. The Ramsey model [10 marks]

Consider a Ramsey model with a general neoclassical production function. We saw in class that the dynamics of consumption per efficient worker, c, are given by the so-called Euler equation:

$$\frac{c}{c} = \frac{r - \rho - \theta g}{\theta},$$

where r is the real interest rate, and ρ , θ , and g are all strictly positive exogenous parameters. We use standard notation. In particular, consumption per efficient worker is given by c = C/A, where C is consumption per worker, and A is the number of efficiency units per worker, where $\dot{A}/A = g$.

(a) Find an expression for the growth rate of consumption per worker, C/C, it terms of (some or all of) r, ρ , θ , and g. (Note that we are not asking for the steady state growth rate of C, but the growth rate outside of steady state.) [5 marks]

(b) In steady state c and r are constant and equal to c^* and r^* . Show how r^* changes in response to an increase in g. That is, find an expression for $\partial r^*/\partial g$ and determine its sign. [5 marks]

3. Dynamic consistency [10 marks]

Consider a central banker (a policy maker) who faces a Lucas supply curve determining the output-inflation trade-off:

$$y = \overline{y} + b(\pi - \pi^e),$$

where y is the (log of the) level of output, \overline{y} is the corresponding output level when $\pi = \pi^e$, π is inflation, and π^e is expected inflation. The central banker controls π , and aims at minimizing the following loss function:

$$L = \frac{1}{2} \left[y - y^* \right]^2 + \frac{a}{2} \left[\pi - \pi^* \right]^2,$$

where y^* and π^* denote the central banker's most desired levels of y, and π , respectively. We assume that $y^* > \overline{y}$.

(a) Derive an expression for the inflation outcome under discretion, as a function of exogenous parameters. (This is the level of π denoted π^{EQ} in the book and in class.) [5 marks]

(b) Find an expression for the central banker's loss, L, when output and inflation equal their outcomes under discretion. Your answer should be the factor $(y^* - \bar{y})^2/2$ multiplied by something involving a and b. [5 marks]

Part B: do any one of the two problems below

4. The Diamond model [15 marks]

Consider a Diamond model, where we set the productivity factor A_t to unity (1) in all periods. The working population, L_t , grows at rate n, i.e., $L_{t+1} = (1+n)L_t$. Lower-case letters denote per-worker terms, e.g. $k_t = K_t/L_t$. Agents live for two periods. Income earned (from labor) in the first period of life (w_t) is spent on saving (S_t) and first-period consumption (C_{1t}) . The first-period budget constraint can thus be written

$$C_{1t} = w_t - S_t.$$

In retirement, the same agent consumes C_{2t+1} , consisting of savings from working age, with interest:

$$C_{2t+1} = S_t (1 + r_{t+1}),$$

where r_{t+1} denotes the interest rate on savings held from period t to period t+1.

The utility function is given by

$$U_t = (1 - \beta) \ln C_{1t} + \beta \ln C_{2t+1},$$

where $0 < \beta < 1$. Capital accumulates according to $K_{t+1} = S_t L_t$.

(a) Derive an expression for optimal S_t in terms of w_t and exogenous parameters. [10 marks]

(b) Let $w_t = (1 - \alpha)Zk_t^{\alpha}$, where Z > 0 and $0 < \alpha < 1$. Find an expression for the steady state level of k_t , denoted k^* , in terms of n, Z, α , and β . [5 marks]

5. The Lucas model [15 marks]

Consider the Lucas model, where the aggregate supply curve can be written as

$$y = b[p - E(p)],$$

and aggregate demand as

y = m - p,

where p is the general price level, m is money supply, and y is output; p, m and y are all stochastic. The general price level, p, is defined as the mean across all p_i , where p_i is the price of good i. (All variables are in logs.)

(a) Find an expression for y in terms of b, m, and E(m). [10 marks]

(b) Let $r_i = p_i - p$ denote the relative price of good *i*, and let $q_i^S = b[p_i - E(p)]$ be the amount supplied of good *i* by the agent that produces it. Derive an expression for q_i^S in terms of *y*, *b* and r_i . [5 marks]

SOLUTIONS

1.

(a) Set $\lambda = 1/(AL)$, which gives

$$y = \frac{Y}{AL} = \frac{F(K, AL)}{AL} = F\left(\frac{K}{AL}, \frac{AL}{AL}\right) = F\left(k, 1\right) = f(k)$$

(b) The trick is to set $F(K, AL) = ALf(\frac{K}{AL})$. The first-order condition for a profit maximum then gives:

$$r = f'(k)$$

(c)

$$w = f(k) - f'(k)k$$

2.

(a)

$$\frac{\overset{\bullet}{C}}{C} = \frac{\overset{\bullet}{c}}{c} + \frac{\overset{\bullet}{A}}{A} = \frac{\overset{\bullet}{c}}{c} + g = \frac{r-\rho}{\theta}$$
(b)

$$r^* = \rho + \theta g \Longrightarrow \frac{\partial r^*}{\partial g} = \theta > 0$$

Q	
J	•

(a)

$$\pi^{EQ} = \pi^* + \frac{b(y^* - \overline{y})}{a}$$

(b)
$$L = \frac{(y^* - \overline{y})^2}{2} \left[1 + \frac{b^2}{a} \right]$$

4.

- (a) $S_t = \beta w_t$
- (b) $\left(\beta Z(1-\alpha)\right)^{\frac{1}{1-\alpha}}$

$$k^* = \left(\frac{\beta Z(1-\alpha)}{1+n}\right)^{\frac{1}{1-\alpha}}$$

5.

(a)

$$y = \left(\frac{b}{1+b}\right) [m - E(m)]$$
(b)

$$q_i^S = br_i + y$$