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1 Problems

1.1 Preliminaries

Problem 1 Consider this differential equation:

•
Z(t) = a− bZ(t), (1)

where a and b are constants (i.e., independent of t).
(a) Find an expression for the steady state level of Z(t); denote it Z∗. That

is, Z∗ is the level of Z(t) at which
•

Z(t) = 0.
(b) Let X(t) = Z(t)− Z∗. What is the steady state level of X(t)?
(c) Find a differential equation for X(t), i.e., write

•
X(t) as a function of

X(t).
(d) Find a solution to the differential equation you wrote under (c). This
solution should be an expression for X(t) in terms of X(0), t, and things
which do not depend on t.
(e) Find an expression for Z(t) in terms of Z(0), t, and things which do not
depend on t.
(f) Does Z(t) approach Z∗ as t→∞?
(g) Assume Z(0) < Z∗; will Z(t) equal Z∗ for any finite t?

Problem 2 Let

•
X(t) = a(t)X(t),

where

a(t) =

 a for t ∈ [0, t0)
a for t ∈ [t0, t1]
a for t ∈ (t1,∞]

,

where 0 < a < a <∞.
(a) Show the time path of a(t) in a diagram with t on the horizontal axis.
(b) Show the time path of ln[X(t)] in a similar diagram.

(c) Let
•

Z(t) = aZ(t), and Z(0) = X(0). Find an expression for the difference
ln[Z(t)]− ln[X(t)], for t > t1.
(d) Find an expression for Z(t)/X(t), for t > t1.
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1.2 The Solow model

Problem 3 Let steady state output per efficient worker be a function of the
saving rate: y∗(s) = f(k∗(s)), where k∗(s) is defined from

sf(k∗(s)) = (n+ g + δ)k∗(s). (2)

Let α(k) = f 0(k)k/f(k). Find the elasticity of y∗(s) with respect to s, i.e.,
find

∂y∗(s)
∂s

s

y∗(s)
. (3)

Your answer should be in terms of α(k∗) only.

Problem 4 Recall that the golden rule level of k, here denoted kg, is given
by

f 0(kg) = n+ g + δ. (4)

Let the production function be CES:

f(k) = [(1− α) + αkρ]
1
ρ , (5)

where ρ ∈ (−∞, 1), and α ∈ (0, 1). Let the golden rule level of saving be
denoted sg.
(a) Is sg increasing or decreasing in n? How does your answer depend on
the sign of ρ?
(b) It can be seen that sg equals the capital share of output in the golden rule
steady state. Show that in the CES case it holds that

f 0(k)k
f(k)

= α

·
k

f(k)

¸ρ
. (6)
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1.3 The Ramsey model and applications

Problem 5 (The transversality condition) Consider the present-value
budget constraint in the Ramsey model, on per-efficient-worker form and with
a finite horizon, S. We can write this asZ S

0

[w(t)− c(t)] e−R(t)+(n+g)tdt+ k(0) = 0, (7)

where the notation is as in the book and the notes. In particular, c(t) and
w(t) are consumption and wage in per-efficient worker terms, and

R(t) =

Z t

0

r(τ)dτ .

The budget constraint on flow-form can be written as:

•
k(t) = w(t) + r(t)k(t)− c(t)− (n+ g)k(t). (8)

(a) Show that

[w(t)− c(t)] e−R(t)+(n+g)t = ∂
£
k (t) e−R(t)+(n+g)t

¤
∂t

. (9)

(b) Use (9) to show that we can rewrite the budget constraint in (7) as:

k(S)e−R(S)+(n+g)S = 0. (10)

(c) Now let the horizon go to infinity. Use (10) and k(t) = K(t)/[A(t)L(t)]
to derive the transversality condition in the book:

lim
S→∞

K(S)e−R(S) = 0. (11)
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Problem 6 (A linearized system) Consider the system of differential
equations derived in the Ramsey model:

•
c(t) = c(t)

θ
[f 0(k(t))− ρ− θg] ≡ Ψ(c(t), k(t))

•
k(t) = f(k(t))− c(t)− (n+ g)k(t) ≡ Φ(c(t), k(t)).

(12)

A first-order Taylor approximation of this system is given by

•
c(t) = Ψc(c

∗, k∗)[c(t)− c∗] +Ψk(c
∗, k∗)[k(t)− k∗]

•
k(t) = Φc(c

∗, k∗)[c(t)− c∗] + Φk(c
∗, k∗)[k(t)− k∗].

(13)

Let

c∗

θ
f 00(k∗) ≡ γ < 0, (14)

and recall that β = ρ − n − (1 − θ)g > 0. Let ec(t) = c(t) − c∗, and ek(t) =
k(t)− k∗, and use the vector notation

z(t) =

 ec(t)
ek(t)

 . (15)

(a) Find expressions for Ψc(c
∗, k∗), Ψk(c

∗, k∗), Φc(c∗, k∗), and Φk(c
∗, k∗) in

terms of γ and β.

Your answer under (a) and the linearization in (13) imply that we can write

•
z(t) =


•ec(t)
•ek(t)
 = Bz(t), (16)

where B is a 2× 2 matrix.
(b) Write B (i.e., all its four elements) in terms of γ and β.

In steady state it must hold that ec(t) = ek(t) = 0. We are going to focus
on linear paths leading to (or from) steady state. On these paths the ratio
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ec(t)/ek(t) must be constant. This implies that ec(t) and ek(t) change at the
same rate; call that rate µ:

•ec(t)ec(t) =
•ek(t)ek(t) = µ. (17)

There are actually two such paths, each with a distinct rate of convergence,
µ. We shall now see that these µ’s are the eigenvalues of B.
(c) Show that these µ’s must satisfy [B− µI] z(t) = 0, for z(t) 6= 0.

Now consider any 2× 2 matrix

A =

·
a11 a12
a21 a22

¸
.

(d) Show that det [A− λI] = 0 can be written as:1

λ2 − λtr(A) + det(A) = 0 (18)

(e) Use your insight in (d) to find both eigenvalues of B. You may denote
them µ1 and µ2.
(f) Which eigenvalue is associated with a stable (convergent) path, and which
eigenvalue is associated with an unstable (divergent) path?

Problem 7 (More on eigenvalues and phase diagrams) Let
•
x(t) =

−αy(t), and
•
y(t) = βx(t), where α and β are strictly positive constants.

(a) Write this system on matrix form.
(b) Does the transition matrix have any real eigenvalues?
(c) Illustrate the dynamics of x and y in a phase diagram.

1The terminology and notation should be familiar: det(X) denotes the determinant,
and tr(X) the trace, of X. That is, if

X =

·
x11 x12
x21 x22

¸
,

then det(X) = x11x22 − x12x21, and tr(X) = x11 + x22 .
I is an identity matrix (with ones on the diagonal and zeros elsewhere).
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Problem 8 (The present-value Hamiltonian) Consider the following
optimization problem:

max
c(t),k(t)

R∞
0

Π(c(t), k(t), t)dt

subject to
•
k(t) = ξ(c(t), k(t), t),

(19)

where Π(•) and ξ(•) are functions; k(t) is called the state variable, and c(t)
the control variable. The present-value Hamiltonian associated with this prob-
lem is given by

H(c(t), k(t),λ(t), t) = Π(c(t), k(t), t) + λ(t)ξ(c(t), k(t), t), (20)

where λ(t) is called the costate variable. It can be shown that the solution to
this optimization problem is given by the following conditions:

Hc(c(t), k(t),λ(t), t) = 0

Hk(c(t), k(t),λ(t), t) = −
•

λ(t)

lim
t→∞

k(t)λ(t) = 0

(21)

(a) Set up the Hamiltonian associated with the consumer choice problem ex-
amined in the book and in class:

max
c(t),k(t)

R∞
0
e−βt [c(t)]

1−θ

1−θ dt

subject to
•
k(t) = w(t) + r(t)k(t)− c(t)− (n+ g)k(t).

(22)

(b) Apply the optimality conditions in (21) to the Hamiltonian set up under
(a), and β = ρ− n− (1− θ)g, to derive the Euler equation:

•
c(t)

c(t)
=
1

θ
[r(t)− ρ− θg] (23)

(c) Use your answer in (b) to show that the transversality condition [the
third condition in (21)] can be written as lim

t→∞
K(t)e−R(t) = 0, where (recall)

R(t) =
R t
0
r(τ)dτ . Hints: note that k(t) = K(t)/[A(t)L(t)]; that A(t) and

L(t) grow at rates g and n, respectively; and that λ(0), A(0), L(0) are all
different from zero.
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1.4 Tobin’s q

Problem 9 (More Hamiltonians) Consider the optimization problem in
a model with installation costs of capital:

max
I(t),k(t)

R∞
0
e−rt [π{K(t)}k(t)− I(t)− C(I(t))] dt

subject to
•
k(t) = I(t).

(24)

(a) Set up the present-value Hamiltonian associated with this problem, fol-
lowing the pattern in Problem 8. Denote the costate variable λ(t). Which is
the control variable, and which is the state variable?
(b) Find the optimality conditions corresponding to (21).
(c) Now define q(t) = ertλ(t). Show that the optimality conditions derived
under (b) can be rewritten as (8.18), (8.19), and (8.20) in the book.
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1.5 Labor market models

Problem 10 Consider the Shapiro-Stiglitz model. The value of having a job
and exerting effort at some point in time t, which we denote V E(t), can be
approximated as

V E(t) = (w − e)∆t+ e−ρ∆tEt{V (t+∆t)|E}, (25)

where ∆t is some (small) time interval; e−ρ∆t is the relative weight put on
utility at time t + ∆t; and we can call Et[V (t + ∆t)|E] the expected value
at time t+∆t, conditional on “being in state E” (having a job and exerting
effort) at time t.
The probability of having the job at time t+∆t is given by e−b∆t, where b is
the job separation rate. We let V U(t+∆t) be the value of being unemployed
at time t+∆t. Likewise, V E(t+∆t) is the corresponding value of still having
the job.
(a) Find an expression for Et[V (t+∆t)|E] in terms of the probability e−b∆t,
and the value of each of the outcomes, V E(t+∆t) and V U(t+∆t).
(b) Find an expression for

V E(t)− V E(t+∆t)

∆t
(26)

in terms of w, e, b, ρ, ∆t, V E(t+∆t), V U(t+∆t).
(c) What does (26) approach as ∆t goes to zero?

Your answer to (b) should look like this:

V E(t+∆t)−V E(t)
∆t

= w − e−
n
1−e−(ρ+b)∆t

∆t

o
V E(t+∆t)

+e−ρ∆t
n
1−e−b∆t

∆t

o
V U(t+∆t).

(27)

(d) Letting ∆t go to zero in (27), using l’Hôpital’s rule2, and your answer
under (c), find an expression for ρV E(t) which looks like in the book and the

notes but now also contains a term
•

V E(t).

2l’Hôpital’s rule states that, if g(0) = h(0) = 0, then

lim
x→0

g(x)

h(x)
= lim
x→0

g0(x)
h0(x)

.
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2 Solutions

Solution to Problem 1

(a) Z∗ = a/b.
(b) X∗ = 0.

(c)
•

X(t) = −bX(t).
(d) X(t) = X(0)e−bt.
(e) Z(t) = Z∗ +X(t) = a/b+X(0)e−bt = a

b
+
£
Z(0)− a

b

¤
e−bt.

(f) Yes, since limt→∞ e−bt = 0; see the answer to (e) above.
(g) No, if Z(0) < a/b, it holds that Z(t) < a/b for all finite t, since

e−bt > 0.

Solution to Problem 2

(a)-(b) see below:

a(t)

}ln{X(t)

t

t

a
a

0t 1t

( )( )01 ttaa −−

( )( )01 ttaa −−

(c) ln[Z(t)]− ln[X(t)] = (a− a)(t1 − t0)
(d) Z(t)/X(t) = e(a−a)(t1−t0)

10



Solution to Problem 3

The see textbook for details:

∂y∗(s)
∂s

s

y∗(s)
=

α(k∗)
1− α(k∗)

(28)

Solution to Problem 4

(a) The 4010 midterm 2003 shows that

sg =

·
α

(n+ g + δ)ρ

¸ 1
1−ρ
, (29)

which tells us that sg is increasing (decreasing) in n if ρ < 0 (ρ > 0).
(b) Note that

f 0(k) =
1

ρ
[(1− α) + αkρ]

1−ρ
ρ αρkρ−1 = [f(k)]1−ρ αkρ−1 = α

·
k

f(k)

¸ρ−1
.

(30)

Multiplying by k/f(k) gives the capital share as in (6).
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Solution to Problem 5

(a) Use (8) to see that

•
k(t)− r(t)k(t) + (n+ g)k(t) = w(t)− c(t) (31)

Differentiating k (t) e−R(t)+(n+g)t with respect to t, we get

•
k(t)e−R(t)+(n+g)t +

·
k(t)

½
−

•
R(t) + n+ g

¾
e−R(t)+(n+g)t

¸

=

· •
k(t)− r(t)k(t) + (n+ g)k(t)

¸
e−R(t)+(n+g)t

= [w(t)− c(t)] e−R(t)+(n+g)t

(32)

where the first equality uses
•

R(t) = r(t) and the last equality uses (31).
(b) We can write

0 =
R S
0
[w(t)− c(t)] e−R(t)+(n+g)tdt+ k(0)

=
R S
0

·
∂[k(t)e−R(t)+(n+g)t]

∂t

¸
dt+ k(0)

=
£
k (S) e−R(S)+(n+g)S

¤− £k (0) e−R(0)+(n+g)0¤+ k(0)
= k (S) e−R(S)+(n+g)S

(33)

where the second equality uses (9) and the third equality uses R(0) = 0.
(c) Since k (S) = K(S)/[A(S)L(S)], and A(S)L(S) = A(0)L(0)e(n+g)S,

we can write (33) as K(S)e−R(S) = 0. Letting S go to infinity gives (11)
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Solution to Problem 6

(a) Taking the derivatives of (12) and then imposing steady state we get:

Ψc(c
∗, k∗) = 1

θ
[f 0(k∗)− ρ− θg] = 0

Ψk(c
∗, k∗) = c∗

θ
f 00(k∗) = γ

Φc(c
∗, k∗) = −1

Φk(c
∗, k∗) = f 0(k∗)− (n+ g) = ρ+ θg − (n+ g) = β,

(34)

where the last equality uses f 0(k∗) = ρ+ θg and the definition of β.
(b) The answer under (a) gives:

B =

·
0 γ
−1 β

¸
(35)

(c) From (17) we see that
•ec(t) = µec(t) and •ek(t) = µek(t), so we can write: •ec(t)

•ek(t)


| {z }
•
z(t)

=

·
µ 0
0 µ

¸ · ec(t)ek(t)
¸

| {z }
z(t)

= µ

·
1 0
0 1

¸
| {z }

I

z(t). (36)

We can then use (36) and (16) to write

•
z(t) = µIz(t) = Bz(t) (37)

or

[B−µI] z(t) = 0. (38)

(d) Write:

A−µI =
·
a11 − µ a12
a21 a22 − µ

¸
(39)
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so that

det [A−µI]

= (a11 − µ) (a22 − µ)− a21a12

= a11a22 − µa22 + µ2 − µa11 − a21a12

= µ2 − µ(a11 + a22)| {z }
tr(A)

+ (a11a22 − a21a12)| {z }
det(A)

= 0

(40)

(e) From (35) it is seen that tr(B) = β, and det(B) = γ. Similar to (18),
the characteristic polynomial is here given by

µ2 − βµ+ γ = 0 (41)

which has solutions

µ1 =
β−
√

β2−4γ
2

< 0

µ2 =
β+
√

β2−4γ
2

> 0
(42)

where the inequalities follows from γ < 0, implying that
p

β2 − 4γ > β.

(f) Note that
•ec(t) = µec(t) has solution ec(t) = ec(0)eµt. Thus limt→∞ ec(t) =

0 and limt→∞ c(t) = c∗ only if µ < 0. So the negative eigenvalue is the stable
one, and the positive eigenvalue is the unstable one.
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Solution to Problem 7

(a) On matrix form it becomes •
x(t)
•
y(t)

 = · 0 −α
β 0

¸
| {z }

A

·
x(t)
y(t)

¸

(b) The characteristic equation becomes

λ2 − tr(A) + det(A) = λ2 + αβ = 0

which does not have any real solution; there are no real eigenvalues, since
αβ > 0.

(c) The (
•
x = 0)-locus lies on the y-axis, and the (

•
y = 0)-locus lies on the

x-axis. The trajectories are cyclical.

0=
•
x

0=
•
y

y

x
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Solution to Problem 8

(a) The Hamiltonian becomes

H(c(t), k(t),λ(t), t) = e−βt[c(t)]1−θ

1−θ

+λ(t) [w(t) + r(t)k(t)− c(t)− (n+ g)k(t)] .
(43)

(b) The first two optimality conditions are

Hc(c(t), k(t),λ(t), t) = e
−βt[c(t)]−θ − λ(t) = 0

Hk(c(t), k(t),λ(t), t) = λ(t) [r(t)− (n+ g)] = −
•

λ(t).

(44)

We can use (44) to write

e−βt[c(t)]−θ = λ(t)

−βt− θ ln[c(t)] = ln[λ(t)]

−β − θ
•
c(t)
c(t)
=

•
λ(t)
λ(t)

−β − θ
•
c(t)
c(t)
= − [r(t)− (n+ g)]

−[ρ− n− (1− θ)g]| {z }
=β

− θ
•
c(t)
c(t)
= − [r(t)− (n+ g)]

− (ρ+ θg)− θ
•
c(t)
c(t)
= −r(t)

•
c(t)
c(t)
= 1

θ
[r(t)− ρ− θg]

(45)

(c) The second line in (44) gives a differential equation for λ(t):

•
λ(t) = λ(t) [n+ g − r(t)] (46)
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which has solution

λ(t) = λ(0)e(n+g)t−R(t) (47)

We now see that

0 = lim
t→∞

k(t)λ(t)

= λ(0) lim
t→∞

k(t)e(n+g)t−R(t)

=

µ
λ(0)

A(0)L(0)

¶
| {z }

6=0

lim
t→∞

K(t)e−R(t)

(48)

where the last line uses k(t) = K(t)/[A(t)L(t)] = K(t)e−(n+g)t/[A(0)L(0)].
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Solution to Problem 9

(a) The control variable is I(t) and the state variable is k(t). The Hamil-
tonian becomes:

H(k(t), c(t),λ(t)) =

e−rt [π{K(t)}k(t)− I(t)− C(I(t))] + λ(t)I(t)
(49)

(b) The optimality conditions become

HI(·) = e−rt [−1− C 0(I(t))]− λ(t) = 0

Hk(·) = e−rtπ{K(t)} = −
•

λ(t)

lim
t→∞

λ(t)k(t) = 0

(50)

(c) It is given that q(t) = ertλ(t). The first line in (50) becomes

1 + C 0(I(t)) = ertλ(t) = q(t) (51)

which is the same as (8.18). Then the third line becomes

lim
t→∞

λ(t)k(t) = lim
t→∞

e−rtq(t)k(t) = 0 (52)

which is the same as (8.20). Then, note that

q(t) = ertλ(t)

ln[q(t)] = ln[ertλ(t)] = rt+ ln[λ(t)]

•
q(t)
q(t)

= r +
•

λ(t)
λ(t)

•
λ(t)
λ(t)

=
•
q(t)
q(t)
− r

•
λ(t) = λ(t)

· •
q(t)
q(t)
− r
¸
= q(t)e−rt

· •
q(t)
q(t)
− r
¸

ert
•

λ(t) = q(t)

· •
q(t)
q(t)
− r
¸
=

•
q(t)− rq(t)

(53)

18



so the second line in (50) becomes

π{K(t)} = −
•

ertλ(t) = rq(t)−
•
q(t) (54)

which is (8.19) in the book.
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Solution to Problem 10

(a) As follows:

Et[V (t+∆t)|E] = e−b∆tV E(t+∆t) + {1− e−b∆t}V U(t+∆t). (55)

(b) Use (55) and (25):

V E(t)−V E(t+∆t)
∆t

= w − e−
n
1−e−(ρ+b)∆t

∆t

o
V E(t+∆t)

+e−ρ∆t
n
1−e−b∆t

∆t

o
V U(t+∆t).

(56)

(c) The expression is simply the definition of a derivative:

lim
∆t→0

n
V E(t)−V E(t+∆t)

∆t

o
=

− lim
∆t→0

n
V E(t+∆t)−V E(t)

∆t

o
= −

•
V E(t)

(57)

(d) Using l’Hôpital’s rule:

lim
∆t→0

n
1−e−(ρ+b)∆t

∆t

o
= lim

∆t→0

n
(ρ+b)e−(ρ+b)∆t

1

o
= ρ+ b

lim
∆t→0

³
e−ρ∆t

n
1−e−b∆t

∆t

o´
=
h
lim
∆t→0

e−ρ∆t
i

| {z }
=1

·
lim
∆t→0

½
1− e−b∆t

∆t

¾¸
| {z }

=b

= b
(58)

and (of course) lim∆t→0 V i(t+∆t) = V i(t), for i = E,U . Using (56) to (58)
we get:

−
•

V E(t) = w − e− (ρ+ b)V E(t) + bV U(t) (59)

or

ρV E(t) = w − e+
•

V E(t)− b £V E(t)− V U(t)¤ . (60)
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