Pontryagin's maximum principle

Problem: for $t \in [0, T]$, choose u(t), x(t) to maximize

$$\int_0^T f(t, x(t), u(t)) dt$$

subject to

$$\dot{x}(t) = g(t, x(t), u(t))$$

and x(0), x(T) given

That is: find optimal paths $\{u(t), x(t)\}_{t=0}^{T}$

Illustration

Start with x(0). What is $x(\Delta)$ for some small $\Delta > 0$?

$$x(\Delta) \approx x(0) + \dot{x}(0)\Delta$$

$$= x(0) + g(0, x(0), u(0))\Delta$$

Choice of u(0) determines $x(\Delta)$

Choice of $u(\Delta)$ determines $x(2\Delta)$

Choice of $u(2\Delta)$ determines $x(3\Delta)$, and so on

Discrete jumps of length Δ

Illustrates why u(t) called *control variable*, x(t) the *state variable*

Slightly more formal approach

Set up Lagrangian

$$\mathcal{L} = \int_0^T f(t, x(t), u(t)) dt + \int_0^T \lambda(t) \left[g(t, x(t), u(t)) - \dot{x}(t) \right] dt$$

One Lagrangian multiplier $\lambda(t)$ for each constraint $\dot{x}(t) = g(t, x(t), u(t))$

Recall integration by parts:

$$\frac{\partial \left[x(t)\lambda(t)\right]}{\partial t} = \lambda(t)\dot{x}(t) + \dot{\lambda}(t)x(t)$$

$$\begin{aligned} x(T)\lambda(T) - x(0)\lambda(0) &= \int_0^T \frac{\partial \left[x(t)\lambda(t)\right]}{\partial t} dt \\ &= \int_0^T \left[\lambda(t)\dot{x}(t) + \dot{\lambda}(t)x(t)\right] dt \\ &= \int_0^T \lambda(t)\dot{x}(t)dt + \int_0^T \dot{\lambda}(t)x(t)dt \end{aligned}$$

$$\int_0^T \lambda(t) \dot{x}(t) dt = x(T)\lambda(T) - x(0)\lambda(0) - \int_0^T \dot{\lambda}(t)x(t) dt$$

Suppress arguments, substitute back into Lagrangian:

$$\mathcal{L} = \int_0^T \left[f + \lambda g - \lambda \dot{x} \right] dt$$

= $\int_0^T \left[f + \lambda g \right] dt - \int_0^T \lambda \dot{x} dt$
= $\int_0^T \left[f + \lambda g \right] dt - \underbrace{\left(x(T)\lambda(T) - x(0)\lambda(0) - \int_0^T \dot{\lambda} x dt \right)}_{=\int_0^T \lambda \dot{x} dt}$
= $\int_0^T \left[f + \lambda g + \dot{\lambda} x \right] dt + \underbrace{x(0)\lambda(0) - x(T)\lambda(T)}_{given}$

Consider optimal choice over interval $[\tau, \tau + \Delta] \subseteq [0, T]$, for some $\tau \in [0, T)$ and $\Delta > 0$

Intuition: "chop up" the integral at au

$$\mathcal{L} = \int_0^\tau \left[f + \lambda g + \dot{\lambda} x \right] dt + \int_{\tau+\Delta}^T \left[f + \lambda g + \dot{\lambda} x \right] dt$$
$$+ x(0)\lambda(0) - x(T)\lambda(T)$$
$$+ \int_{\tau}^{\tau+\Delta} \left[f + \lambda g + \dot{\lambda} x \right] dt$$

Focus on last term; rest additive constants

Divide by the constant $\boldsymbol{\Delta}$

$$\frac{1}{\Delta} \int_{\tau}^{\tau+\Delta} \left[f + \lambda g + \dot{\lambda} x \right] dt$$

$$\approx \underbrace{f(\tau, x(\tau), u(\tau)) + \lambda(\tau)g(\tau, x(\tau), u(\tau))}_{\equiv H(\tau, x(\tau), u(\tau), \lambda(\tau))} + \dot{\lambda}(\tau)x(\tau)$$

Note: approximation error vanishes as Δ approaches zero

Why? If
$$G'(x) = g(x)$$
, then

$$\lim_{\Delta \to 0} \frac{1}{\Delta} \int_{a}^{a+\Delta} g(x) dx = \lim_{\Delta \to 0} \frac{G(a+\Delta) - G(a)}{\Delta} = g(a)$$
(Recall definition of derivative)

The first-order conditions associated with the Lagrangian:

$$rac{\partial H(au, x(au), u(au), \lambda(au))}{\partial u(au)} = 0$$

$$rac{\partial H(au, x(au), u(au), \lambda(au))}{\partial x(au)} = - \overset{\cdot}{\lambda}(au)$$

Must hold for all $\tau \in [0, T]$

Just change time indexation:

$$\frac{\partial H(t, x(t), u(t), \lambda(t))}{\partial u(t)} = 0$$
 (*)

$$\frac{\partial H(t, x(t), u(t), \lambda(t))}{\partial x(t)} = -\dot{\lambda}(t)$$
(**)

u(t) called control variable, x(t) the state variable, $\lambda(t)$ the costate variable

 $H(t, x(t), u(t), \lambda(t))$ called the Hamiltonian

(*) and (**) are the optimality conditions associated with that Hamiltonian

These conditions are *necessary* for u(t), x(t) to be optimal for all $t \in [0, T]$

That is: the optimal paths $\{u(t), x(t)\}_{t=0}^T$ must satisfy (*) and (**)

Must also satisfy Transversality condition

Can be derived from $\dot{x}(t) = g(t, x(t), u(t))$

See application to Ramsey model in Problem 5 under "More problems" at Econ 5011 website