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Unified frameworks

Stylized facts about long-run development in West-

ern Europe: 3 stages passed on way to the Industrial

Revolution

1. Malthusian Regime (1000’s of years B.C. to 1500’s):

slowly growing population and per-capita income

levels; positive relationship between the two

2. Post-Malthusian Regime (1500’s to mid 1800’s):

faster growth in population and per-capita in-

come; still positive relationship between the two

3. Modern Growth Regime (mid 1800’s till today);

lower population growth rate but accelerated growth

in per-capita income; negative relationship be-

tween the two



Galor and Weil (2000): unified framework

Means: the model should explain full transition — all

of the Three Regimes — endogenously

Contrast to the story in Becker-Murphy-Tamura (1990),

Barro-Becker (1989) (“Old school”); there we had:

• One steady-state with high fertility (population
growth), non-growing per-capita income

• Another rich steady state (or balanced growth
path) with low fertility

• Shocks can make the economy jump from one to

the other

Shortcomings:

• Not all 3 regimes explained; only Post-Malthusian
and Modern Growth Regime

• Transition from one regime to the next not ex-

plained

The Galor-Weil model: many interacting mechanisms,

seeks to explain “everything:”

endogenous technological progress

endogenous fertility

endogenous education choice, human capital

land in fixed supply

X = land; At = technology (land augmenting); XAt
= effective resources

Effective resources per worker: xt = (AtX) /Lt



ht = human capital per worker

Income per worker:

zt = h
α
t x
1−α
t (1)

gt+1 = technological progress from period t to t+ 1

gt+1 =
At+1 −At

At
(2)

Human capital production

ht+1 = h(et+1, gt+1) (3)

et+1 = education invested in kids in period t

Assumptions:

he(e, g) > 0 hee(e, g) < 0
hg(e, g) < 0 hgg(e, g) > 0

(4)

Interpretation:

Education raises human capital; declining marginal ef-

fect

Technological progress reduces human capital (mak-

ing knowledge obsolete); an “erosion effect,” declining

on the margin

Also assume:

heg(e, g) > 0 (5)

Interpretation: technological progress raises the return

to investing in education; erosion effect declines in

eduction

Utility:

ut = (1− γ) ln ct + γ ln(ntht+1) (6)

Budget constraint:

ct = zt [1− (τ + et+1)nt] (7)



Each unit of education costs one unit of time; τ is a

fixed time cost; so each child costs (τ + et+1) units

of time to rear

(More general formulation; see paper: let τe = time

cost per unit of education; τq = fixed time cost per

child; then total time cost per child = τq + τeet+1)

Maximize utility in (6) subject to four constraints:

Budget constraint in (7)

Human capital production function in (3),

Subsistence consumption constraint: ct ≥ ec; and
Non-negative constraint on education: et+1 ≥ 0

FOC’s depend on whether ct ≥ ec and et+1 ≥ 0 are

binding

FOC for nt implies:

nt[τ + et+1] =

(
γ if zt ≥ ez

1− ec
zt

if zt ≤ ez (8)

where ez = ec/(1− γ); zt ≤ ez ⇔ ct ≥ ec binding
Total time spent on children is rising in potential in-

come, zt, up until zt = ez; then constant; see indiffer-
ence curve diagram in Galor and Weil (2000)

Education

Optimal et+1 is given by:

G(et+1, gt+1)

(
= 0 if et+1 > 0
> 0 if et+1 = 0

(9)

where

G(et+1, gt+1) = (τ + et+1)he(et+1, gt+1)
−h(et+1, gt+1) (10)

Assumptions about h(et+1, gt+1) made above imply:



Ge(et+1, gt+1)
= (τ + et+1) hee(et+1, gt+1)| {z }

<0

< 0 (11)

Gg(et+1, gt+1) =
(τ + et+1) heg(et+1, gt+1)| {z }

>0

− hg(et+1, gt+1)| {z }
<0

> 0

(12)

Use Implicit Function theorem to see that et+1 is in-

creasing in gt+1:

e0(gt+1) = −
Gg(et+1, gt+1)

Ge(et+1, gt+1)
> 0 (13)

if et+1 > 0

Next assume:

G(0, 0) = τhe(0, 0)− h(0, 0) < 0 (14)

Implies that there exists some bg > 0, such that et+1
is constrained to zero if gt+1 < bg
Thus:

e(gt+1)

(
> 0 if gt+1 > bg
= 0 if gt+1 ≤ bg (15)

Technological progress

Assumed to depend on education and population size

gt+1 = g(et;L) (16)

Assume that

g(0;L) > 0 (17)

Some technological progress also in absence of edu-

cation



Dynamics for et and gt

First: dynamic analysis done holding L constant

Later: “tie it all together” by letting population ex-

pand over time, linking it to the endogenous fertility

rate, nt
Constant L is good approximation if nt close to one,

and population growth close to zero

Dynamical system for et and gt

et+1 = e(g(et;L))
gt+1 = g(et;L)

(18)

Three types of dynamic configuration possible, de-

pending on population size

1. Small population, Llow: no education, slow tech-

nological progress

2. Moderate population, Lm: multiple steady states

3. Large population, Lhigh: unique steady state with

fast technological progress and high education

Scenario: slowly expanding population (from Llow to

Lhigh)

Initially nothing happens to education; e = 0 in steady

state

But slowly rising rates of technological progress, as

population expands

As g(0;L) > bg the whole configuration changes: spurt
in technological progress and rise in education time

Technological change and levels of education rise; jointly

reinforcing one another; rising technological progress

not driven by expanding population any longer

Expanding population like ticking time bomb: once it

reaches a threshold everything happens at once
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Parametric example

Let

ht+1 = h(et+1, gt+1) =
et+1 + ρτ

et+1 + ρτ + gt+1
, (19)

where ρ ∈ (0, 1)

Let

gt+1 = g(et;L) = (et + ρτ)a(L) (20)

where, a(0) > 0, a0(L) > 0 and limL→∞ a(L) ≡ a∗ ∈
(0,∞)

Interpretation: the fixed time cost of rearing children,

τ , builds human capital to some extent but not as

effectively as education, et+1; thus ρ < 1

Optimal education time becomes

e(gt+1) = max
n
0, {gt+1τ(1− ρ)}1/2 − ρτ

o
(21)



The threshold level of technological change above which

education time is operative (not constrained to zero):

bg = ρ2τ

1− ρ
(22)

And the associated level of population, denoted bL, is
given by:

a( bL) = ρ

1− ρ
(23)

Illustration: note that g(et;L) now linear in et; a(L)

determines both the slope and the intercept

te

tg )( 11 ++ = tt gee

)ˆ;(1 Legg tt =+

ĝ

);(1
high

tt Legg =+

);(1
low

tt Legg =+

Llow < bL < Lhigh



Two configurations possible

1. L ≤ bL; and thus g(0;L) = ρτa(L) < bg; only
steady state that exists is one where technolog-

ical progress slow, and parents do not invest in

education:

e0(L) = 0
g0(L) = ρτa(L)

(24)

2. L ≥ bL; only steady state that exists is one where
technological progress is rapid, and parents invest

in education:

e(L) = τ [(1− ρ)a(L)− ρ]
g(L) = τ(1− ρ)[a(L)]2

(25)

Note that e0( bL) = e( bL) and g0( bL) = g( bL)

Can also be seen that human capital is the same in
the two steady states:

h
³
e0(L), g0(L)

´
= h (e(L), g(L))

= 1
1+a(L)

≡ h(L) (26)

where we note that h0(L) < 0, since a0(L) > 0

Dynamics of Lt and At

Dynamical system approximated around either one of
the above steady states for e and g

Difference equation for At

At+1 =

( h
1 + g0(Lt)

i
At if Lt ≤ bL

[1 + g(Lt)]At if Lt ≥ bL (27)

To find difference equation for Lt we need the fertility
rate

Use optimal fertility in (8) and optimal education in
(21), to write fertility as function of gt+1 and potential
income, zt



Four cases:

I. Lt ≤ bL and zt ≥ ez: education time constrained
to zero, but consumption not constrained to sub-

sistence

nt =
γ

τ
> 1

(assuming γ > τ). That is: fertility is constant

and independent of both gt+1 and zt

II. Lt ≤ bL and zt ≤ ez: education time constrained
to zero, and consumption constrained to subsis-

tence

nt =
1− ec

zt

τ

That is: fertility is independent of gt+1 but in-

creasing in zt

III. Lt ≥ bL and zt ≤ ez: education time not con-
strained to zero, but consumption constrained to

subsistence

nt =
1− ec

zt

τ + e(gt+1)

That is: fertility is falling in gt+1 and increasing

in zt

IV. Lt ≥ bL and zt ≥ ez: education time not con-
strained to zero, and consumption not constrained

to subsistence

nt =
γ

τ + e(gt+1)

That is: fertility is falling in gt+1 and independent

of zt

Next: find expressions for e(gt+1) and zt in terms of

Lt and At



Education, e(gt+1), in steady state associated with

Lt ≥ bL: function of Lt; see (25)
e(gt+1) = e(Lt) = τ [(1− ρ)a(Lt)− ρ] (28)

Income, zt, given by: zt = h
α
t x
1−α
t

Substitute h(Lt) for ht, where (recall) h
0(Lt) < 0; see

(26)

Recall: xt = (AtX) /Lt

This gives:

zt = [h(Lt)]
α

"
AtX

Lt

#1−α
≡ z(Lt,At) (29)

The four cases again:

I. Lt ≤ bL and z(Lt,At) ≥ ez:
nt =

γ

τ
> 1

II. Lt ≤ bL and z(Lt,At) ≤ ez:
nt =

1− ec
z(Lt,At)

τ

III. if Lt ≥ bL and z(Lt,At) ≤ ez:
nt =

1− ec
zt

τ + e(Lt)
=

1− ec
z(Lt,At)

τ [(1− ρ)[1 + a(Lt)]

IV. Lt ≥ bL and z(Lt,At) ≥ ez:
nt =

γ

τ + e(Lt)
=

γ

τ [(1− ρ)[1 + a(Lt)]



Difference equation for Lt:

Lt+1 =



γLt
τ

if Lt ≤ bL
and z(Lt,At) ≥ ez1−

ec
z(Lt,At)
τ

Lt if Lt ≤ bL
and z(Lt,At) ≤ ez

 1− ec
z(Lt,At)

τ [(1−ρ)[1+a(Lt)]

Lt if Lt ≥ bL
and z(Lt,At) ≤ ez

½
γ

τ [(1−ρ)[1+a(Lt)]
¾
Lt

if Lt ≥ bL
and z(Lt,At) ≥ ez

(30)

Together (27) and (30) constitute a dynamical system

for At and Lt

Phase diagram; vertical axis: Lt, horizontal axis: At

At always growing (i.e., At+1 > At) since gt+1 always

positive; no (∆At = 0)-locus

However: At grows faster north of bL
Locus along which ∆Lt = 0 given by Lt+1 = Lt
(nt = 1)

differs across regions; see phase diagram

Start in region (II): slow growth in population and

technology; path close to (∆Lt = 0)-locus

Enter region (III): faster growth in technology and in-

come; population growth faster too, due to income

effect (subsistence constraint still binding)

Enter region (IV): continued fast growth in technol-

ogy but slowdown in population growth as subsistence

constraint no longer binding



tA

tL

L̂

0=∆ tL
zzt ~=

(I)
(II)

(III)
(IV)

Epidemics

Another model replicating Galor and Weil’s three regimes:
Lagerlöf (2003)

Story:

Population hit by shocks to mortality, epidemics
Industrial revolution result of series of mild shocks,
causing population expansion
Population expansion causes rise in the return to ed-
ucating kids (scale effect)
At some point a non-negativity constraint on educa-
tion time stops to be binding; parents substitute from
quantity to quality

Framework similar to Becker, Murphy, and Tamura
(1990)

Differences to Galor and Weil:
Explains stochastic nature of mortality and why volatil-
ity in mortality declined
Generates time path, easier to see the three regimes



Demographic transition in Sweden Fluctuations in population growth in world regions



Consumption and production

Ct = Dlt(L+Ht) (31)

Ct = output = consumption, D = productivity pa-

rameter, lt = time input in goods production

L+Ht = time-augmenting human capital

L from “nature”, Ht from parents

Time

1 = lt + (v + ht)Bt (32)

Bt = number of born children

v + ht = time spent on each born child; adult time

endowment = 1

v = fixed time cost of rearing one child

ht = time spent educating each child

Mortality

Tt = T (Ht/Pt,ωt) =
Ht/Pt

ωt +Ht/Pt
(33)

Tt = fraction of Bt born children who survive to adult-

hood.

Pt = adult population in period t

ωt = epidemic shock > 0; e.g. lnωt ∼ N(µ,σ)

Why this form? Tt =
Ht/Pt

ωt+Ht/Pt

Mortality rate between zero and one

Epidemic shock raises mortality (lowers the survival

rate Tt)

Lots of human capital and/or a low population⇒ low

mortality



If human capital grows at a faster rate than population

⇒ Ht/Pt approaches infinity⇒ mortality approaches

zero, epidemics have no effect

Human capital

Ht+1 = A(Pt) [L+Ht] (ρv + ht) (34)

A(Pt) = productivity in human capital production,

“scale effect”

Positive effect on learning in regions with shorter geo-

graphical distance between people (cities); consistent

with empirical evidence

ρv = the direct inheritance of human capital, ρ ∈
(0, 1), drives the dynamics of human capital at early

stages of economic development, when ht = 0

For calibration, we use this functional form:

A(Pt) = A
∗ − eA+ eAÃ Pt

η + Pt

!
= A∗ − eAÃ η

η + Pt

!
(35)

A∗ > eA, η > 0
Preferences

Ut = ln(Ct) + α ln(BtTt) + αδ ln(L+Ht+1) (36)

Assume δ ∈ (ρ, 1) to guarantee the existence of an

interior solution (see soon)

Max subject to expressions for Ht+1 and Ct



max
(ht,Bt)∈R2+

ln[1− (v + ht)Bt](L+Ht)]+

α ln(BtTt) + αδ ln {L+A(Pt) [L+Ht] (ρv + ht)}
(37)

First-order condition for Bt gives

Bt =
µ

α

1 + α

¶
1

v + ht
(38)

Time spent on children, (v+ht)Bt = constant fraction

of the unit time endowment, following from log utility

First-order condition for ht complicated

Trick: substitute optimal Bt in (38) and expression

for Ht+1 in (34) into Ut

FOC for ht gives:

ht =
1

1− δ

"
v(δ − ρ)− L

A(Pt)(L+Ht)

#
(39)

If RHS<0, ht = 0

ht operative (i.e., not constrained to zero) for high

enough A(Pt)(L+Ht)

Use expression for A(Pt) in (35)

Define

Γ(Ht) = η

 eA
A∗ − L

v(δ−ρ)[L+Ht]
− 1

 (40)

Then ht > 0 if Pt > Γ(Ht); else ht = 0



Dynamical system

Pt+1 =



³
αPt
1+α

´µ
(1−δ)A(Pt)[L+Ht]

v(1−ρ)A(Pt)[L+Ht]−L
¶µ

Ht/Pt
ωt+Ht/Pt

¶

if Pt > Γ(Ht)

αPt
(1+α)v

µ
Ht/Pt

ωt+Ht/Pt

¶

if Pt ≤ Γ(Ht)

(41)

Ht+1 =

(
vδ(1−ρ)A(Pt)[L+Ht]−L

1−δ if Pt > Γ(Ht)

ρvA(Pt) [L+Ht] if Pt ≤ Γ(Ht)
(42)

2-dimensional, non-linear, and dependent on epidemic

shock, ωt

Rig model so that a high-ω economy may be stuck

in a locally stable (Malthusian) steady state; low-ω

economy converges to a balanced growth path

Illustration: see phase diagrams

High ω

0=tP∆

0=tH∆

tH

tP
frontier   ht 0=



Low ω

0=tP∆

0=tH∆

tH

tP
frontier   ht 0=

Calibrate and simulate the model:

1. choose with H0 and P0

2. draw ω0 from log normal distribution

3. calculate H1 and P1

4. draw ω1

5. calculate H2 and P2

....and so on....

Result: see figures




