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Big questions in economics:

Why are some countries poor, and others rich?

All rich countries used to be poor hundreds of years

ago: what made them grow rich?

Some countries used to be relatively rich, but have

been overtaken by previously poor countries: why?

What types of policies/institutions make countries grow

rich?

Why are these policies/institutions not already in place?



Some Facts:

USA is one of the richest countries in the world today

Richest here means: highest GDP per capita, but

most other measures give similar picture

4 examples for comparison: Japan, India, Argentina,

Canada

Compare their GDP/capita relative to the US, 1950-

90



See figure: comparison of four countries 1950-1990

Per-capita incomes relative to USA

Canada: catching up

Japan: remarkable spurt

Argentina: stagnating

India: little change since 1950





Income gaps over time and across regions

• Across regions:

— Poor countries in (Sub-Saharan) Africa, Latin

America, (South/Central) Asia

— Rich countries in North America, Europe, Aus-

tralia, East Asia

• Over time:

— We were all poor 1,000 years ago, or more

— A few despotic rulers excepted

— Sustained growth in per-capita income started

only (some) 200 years ago: called Industrial

Revolution

— At the same time: increased population growth



— But later a decline in population growth

— Called the Demographic Transition

— Switch from growth in # people to growth in

living standards



Growth Rates in Western Europe
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• Also: changes over time in cross-regional income
gaps

— First “pristine” civilizations on earth in Mid-

dle East (Mesopotamia), Egypt, China, In-

dia, Mesoamerica (the Aztecs/Maya), South

America (the Incas) – not richest today

— “Reversal of fortune” issue: Climate/geography?

— Why was Western Europe first to experience

an Industrial Revolution? “Guns, Germs &

Steel”



Many variables correlated with income:

• Poor countries usually have:

— Lower levels of education

— More child labor

— Higher (child/infant) mortality rates

— Higher fertility rates

— Less gender equality

— More conflicts (e.g. civil wars, revolutions)

— More corruption, less property rights, worse

roads...

• Why these patterns? Cause, effect?



Growth Models

• Many questions: how can we start looking for

answers?

• Set up a model!!!

• Starting point: high income levels due to (long)
periods of growth in income levels. No jumps over

night (cf Figure)

• What makes income levels grow over time?

• Time component calls for dynamic models

• Means: many periods (typically infinitely many)



How does this course differ from other
growth courses?

• More on some specific topics: fertility, mortal-
ity, gender equality, institutions, “very long run”

growth. Less on other topics: R&D, technologi-

cal diffusion, barriers-to-riches literature, growth

accounting

• More theory, less empirical work/econometrics

— But we’ll talk about data, and do some quan-

titative exercises

• Many growth courses use continuous time mod-
els; here only (or mostly) discrete time



How course is organized: 3 components

• These lecture notes

— think of it as textbook, but with more typos

— available of my home page

• Problem sets

— not to be handed in



• Reading list

— a set of journal articles, some book chapters

— to be updated; see my home page

— get published articles online via library home

page:

http://www.library.yorku.ca/ search on jour-

nal name

— unpublished papers (mimeos): can often be

found online, google on author/title; may put

link on web site

— some book chapters also in library for copy-

ing: search at library web site under Course

reserve material, instructor name Lagerloef,

course name “Theory of Growth-Soc’lst. Econ

(ECON5380)” (I know, don’t ask)

— some material is hard to read; use as reference;

good training in academic communication



Basics: terminology etc.

Growth models are dynamic models: involve time, t

Two types of dynamic models:

Discrete-time models: Means the variable t (time) is

a (non-negative) integer: t ∈ {0, 1, 2, ...}

Discrete-time variables usually written xt

Described by difference equations: xt+1 = φ(xt)

Continuous-time models: Means t is a (non-negative)

real number: t ∈ [0,+∞) = R+

Continuous-time variables usually written x(t)

Described by differential equations :
•
x (t) =

∂x(t)
∂t =

ζ(x(t))

Here: emphasis on discrete-time (versions of) growth

models



Difference equations

Some terminology

Autonomous: xt+1 = φ(xt)

non-autonomous: xt+1 = φ(xt, t)

1-dimensional: xt+1 = φ(xt)

2-dimensional: xt+1 = φ(xt, yt), yt+1 = ψ(xt, yt)

Linear: xt+1 = a+ bxt
non-linear: xt+1 = φ(xt), φ

00(xt) 6= 0

1st order: xt+1 = φ(xt)

2nd order: xt+2 = φ(xt+1, xt)

Exercise: write 2nd order, 1-dimensional difference

equation, xt+2 = φ(xt+1, xt), as 1st order, 2-dimensional

Solution: let yt ≡ xt+1; this gives: yt+1 = φ(yt, xt),

and xt+1 = yt.



Solutions to difference equations:

xt+1 = φ(xt) has solution {xt}∞t=0

That is: {xt}∞t=0 is solution to xt+1 = φ(xt) if xt+1 =

φ(xt) for all t ∈ {0, 1, 2...}

Intuitive idea: start with x0, which gives x1 = φ(x0),

which gives x2 = φ(x1), and so on.

Steady state equilibrium (or steady state):

x is a steady state to xt+1 = φ(xt) if, and only if,

x = φ(x)

I.e., x is a fixed point to φ(x)



Stability

x is locally stable if, and only if:

φ0(x) ∈ (−1, 1)

(locally stable here roughly same as “asymptotically”

locally stable)

x is globally stable if xt converges to x regardless of

starting value, x0

Usually equivalent to x being (a) locally stable, and

(b) unique

If φ0(x) < 0 the steady state is called oscillatory



Locally stable steady state: φ0(x) ∈ (0, 1)

Locally unstable steady state: φ0(x) > 1

Oscillatory locally stable steady state: φ0(x) ∈ (−1, 0)

Oscillatory locally non-stable steady state: φ0(x) <
−1
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Production functions

Standard setting: Y=output, K (capital) and L (la-

bor)= inputs

Y = F (K,L)

Neo-classical production functions satisfy these con-

ditions:

(1) Positive marginal products:

FK(·) > 0, FL(·) > 0

(2) Diminishing marginal products:

FKK(·) < 0, FLL(·) < 0

(3) The Inada condition:

lim
Z→0FZ(·) =∞, limZ→∞FZ(·) = 0, Z = K,L



(4) Constant Returns to Scale (CRS):

λF (K,L) = F (λK,λL), for all λ > 0

Intensive form production function

Set λ = 1/L

Let lower-case variables denote per-worker levels

y =
Y

L
=
F (K,L)

L
=

= F
µ
K

L
, 1
¶
= F (k, 1) ≡ f(k)

Assumptions (1)-(3) above imply:

f 0(k) > 0, f 00(k) < 0
lim
k→0 f

0(k) = ∞, lim
k→∞ f 0(k) = 0

Also, using l’Hôpital’s Rule:

lim
k→0

f(k)

k
= lim
k→0

f 0(k)
1

=∞



Factor prices

Atomistic firms take factor prices as given when max-

imizing profits:

max
K,L

F (K,L)−wL− (r + δ)K

w=wage rate, r=real interest rate, δ=depreciation

rate

Rewrite F (K,L) = Lf(k) = Lf(KL )

Exercise: show that

w = FL(K,L) = f(k)− f 0(k)k
r = FK(K,L)− δ = f 0(k)− δ

I.e., K and L paid their marginal products

If δ = 1 (full depreciation): gross interest rate given

by R ≡ 1 + r = f 0(k)



Parametric examples of production functions

Cobb-Douglas:

F (K,L) = KαL1−α

f(k) = kα

CES (various formulations):

F (K,L) = [αKσ + (1− α)Lσ]
1
σ

f(k) = [αkσ + (1− α)]
1
σ

where σ ∈ (−∞, 1]

Alternative formulations: ρ ≡ −σ ∈ [−1,∞)



The Solow Growth Model

Discrete time setting

Notation: Kt = capital in period t; δ = depreciation

rate; s = rate of saving/investment out of income, Yt

Evolution of capital stock:

Kt+1 = sYt + (1− δ)Kt (1)

Lt = population/labor force in period t

n = growth rate of population

Lt+1 = (1 + n)Lt (2)

Assume n ≥ 0, δ ≥ 0



Income:

Yt = F (Kt,Lt) (3)

Find difference equation for kt = Kt/Lt, on the form:

kt+1 = φ(kt)

Use (1) to (3) to get

Kt+1
Lt

=
Kt+1
Lt+1

Lt+1
Lt

= kt+1(1 + n)

= sYt+(1−δ)Kt
Lt

= syt + (1− δ)kt = sf(kt) + (1− δ)kt

(4)

Or:

kt+1 =
sf(kt) + (1− δ)kt

1 + n
≡ φ(kt) (5)



Properties of φ(kt)

φ0(kt) = 1−δ
1+n +

s
1+nf

0(kt) > 0

φ00(kt) = s
1+nf

00(kt) < 0

lim
kt→0

φ0(kt) = 1−δ
1+n +

s
1+n lim

kt→0
f 0(kt) =∞

lim
kt→∞

φ0(kt) = 1−δ
1+n +

s
1+n lim

kt→∞
f 0(kt)

= 1−δ
1+n < 1 (unless n = δ = 0)

(6)

Together these guarantee: existence, uniqueness, and
stability of steady state — see 45◦-diagram

Check: If one of the 4 properties above change, how
come existence, uniqueness, and stability are no longer
guaranteed?

Problem sets: relax assumptions about (a) neoclassi-
cal production function; and (b) saving rate (s) being
same across factor payments
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The Diamond Overlapping Generations
Model

Agents live in two periods: working age, retirement

c1,t = consumption of working agent in period t

c2,t = consumption of retired agent in period t

st = saving of working agent in period t

Rt+1 = 1+rt+1 = gross interest rate on savings held

from period t to t+ 1

wt = period-t wage rate

Consider agent young/working in period t

Working-age budget constraint: c1,t = wt − st



Old-age budget constraint: c2,t+1 = Rt+1st

Utility: Ut = U(c1,t, c2,t+1)

Optimal savings decision given by s(wt,Rt+1), de-

fined from

s(wt,Rt+1) =argmax
st∈[0,wt]

U(wt − st, Rt+1st) (7)

Example: logarithmic utility

max
st∈[0,wt]

(1− β) ln(wt − st) + β ln(Rt+1st) (8)

First-order condition:

−(1− β)(wt − st)−1 + βs−1t = 0 (9)

Solving for st gives:

s(wt,Rt+1) = βwt (10)



Capital accumulation

Total savings in period t= total capital stock in period

t+ 1

stLt = Kt+1 (11)

Lt = number young people in period t

Lt+1 = (1 + n)Lt

Kt+1
Lt

= kt+1(1 + n)

= st = s(wt,Rt+1)
(12)

Factor prices (recall) given by marginal products

wt = f(kt)− f 0(kt)kt ≡ w(kt)
Rt+1 = f

0(kt+1) + 1− δ ≡ R(kt+1) (13)

Thus, kt+1 = φ(kt) where φ(kt) is defined from

φ(kt) =
s{w(kt), R(φ(kt))}

1 + n
(14)



Note: at given kt, kt+1 is not necessarily unique. To

see this, hold kt constant, and replace φ(kt) in (14)

with kt+1, i.e., kt+1 = s{w(kt), R(kt+1)}/(1 + n)

Always true thatR0(kt+1) < 0. Assume ∂s(·)/∂Rt+1 <
0 (over some interval)

Then the right-hand side is increasing in kt+1

Since the left-hand side is too, there could be multiple

kt+1 for given kt

Intuition: if savings are high, interest rates are low

(=marginal product of capital), sustaining high sav-

ings [given ∂s(·)/∂Rt+1 < 0]



Called an indeterminacy; implies backward bending

φ(kt)

Illustration: see 45◦-diagram

Logarithmic example again: s(wt,Rt+1) = βwt

kt+1 =
β
£
f(kt)− f 0(kt)kt

¤
1 + n

≡ φ(kt) (15)

φ0(kt) = −β
1+nf

00(kt)kt > 0
φ00(kt) = −β

1+nf
000(kt) ≷ 0

(16)

The sign of φ00(kt) depends on the third derivative
of production function – about which we have not

made any assumptions

Multiple steady states possible, even with neoclassical

production function (see problem set)

See figure — which are stable, unstable?
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The Ramsey Model

Infinitely lived dynasty

Parents care about children

n = children per adult

α = weight on each child’s utility = intergenerational

discount factor

u(ct) = adult’s utility from own consumption, ct

Utility of generation t:

Vt = u(ct) + αnVt+1 (17)

kt+1 = capital bequest per child



Budget constraint:

nkt+1 = wt + (1 + rt)kt − ct (18)

Capital income: each agent endowed with kt by her

parent; principal + interest = (1 + rt)kt

Labor income: each agent supplies (inelastically) one

unit of labor, paid wt

Solving the model

Looking for two-dimensional system of difference equa-

tions, like this:

ct+1 = g(ct, kt)
kt+1 = h(ct, kt)

(19)

Equation for kt+1 given by budget constraint in (18)

Need to find equation for ct+1 — given by the so-called

Euler Equation



Derived from optimal intertemporal choice for con-

sumption

Two approaches: the Bellman Equation and the Hamil-

tonian

I. The Bellman Equation

Define the value function V (·) from:

V (kt) = max
kt+1≥0


u(wt + (1 + rt)kt − nkt+1)

+αnV (kt+1)


(20)

Note: value function is time-independent

FYI: existence of value function requires certain con-

ditions to hold — see Contraction Mapping Theorem



FOC with respect to kt+1:

−u0(ct)n+ αnV 0(kt+1) = 0 (21)

Find V 0(kt+1)

Let k∗t+1 denote optimal kt+1

Must be a function of kt

From definition of V (kt) in (20)

V (kt) = u(wt + (1 + rt)kt − nk∗t+1)
+αnV (k∗t+1)

(22)



Differentiate with respect to kt

V 0(kt) = u0(wt + (1 + rt)kt − nk∗t+1)(1 + rt)

+
∂k∗t+1
∂kt

n
−nu0(ct) + αnV 0(k∗t+1)

o
| {z }

=0 from FOC (21)

= u0(ct)(1 + rt)
(23)

This is the so-called Envelope Theorem

Note that (23) must hold for arbitrary t:

V 0(kt+1) = u0(ct+1)(1 + rt+1) (24)

Together (21) and (24) give the Euler Equation:

u0(ct)
u0(ct+1)

= α(1 + rt+1) (25)



II. The Hamiltonian

Forward Vt in (17) to Vt+1; insert back into Vt

Vt = u(ct) + αnVt+1
= u(ct) + αn [u(ct+1) + αnVt+2]

= ... =
P∞
i=0(αn)

iu(ct+i)
(26)

Let t = 0 and rename index variable t

V0 =
∞X
t=0

(αn)tu(ct) (27)

Rewrite budget constraint:

kt+1 =
1

n
[wt + (1 + rt)kt − ct] (28)

Hamiltonian:

H(ct, kt,λt+1) = (αn)
tu(ct)

+λt+1
n
1
n [wt + (1 + rt)kt − ct]

o (29)



Intuition: λt+1 is the present value in utility terms of

capital in period t+ 1 (the shadow price of kt+1).

Optimality conditions:

∂H(ct, kt,λt+1)

∂ct
= (αn)tu0(ct)− λt+1/n = 0 (30)

∂H(ct, kt,λt+1)

∂kt
= λt+1

µ
1 + rt
n

¶
= λt (31)



Deriving Euler Equation:

from (30): (αn)tu0(ct) = λt+1/n

from (31): (αn)tu0(ct)n
³
1+rt
n

´
= λt

forward and divide by n: (αn)t+1u0(ct+1)
³
1+rt+1
n

´
=

λt+1/n

back into first equation:

(αn)tu0(ct) = (αn)t+1u0(ct+1)
µ
1 + rt+1

n

¶
(32)

which gives the Euler Equation:

u0(ct)
u0(ct+1)

= α(1 + rt+1) (33)



Dynamical system for the Ramsey Model

Recall: looking for ct+1 = g(ct, kt) and kt+1 = h(ct, kt)

Budget constraint gives kt+1 = h(ct, kt)

Euler Equation and rt+1 = f
0(kt+1)−δ = f 0(h(ct, kt))−

δ gives ct+1 = g(ct, kt)

Example: Cobb-Douglas production (y = kρ),

logarithmic utility [u(c) = ln(c)], and full deprecia-

tion (δ = 1)

kt+1 =
1
n

h
k
ρ
t − ct

i

ct+1 = αρ
µ
1

n

¶ρ−1 h
k
ρ
t − ct

iρ−1
| {z }

kρ−1t+1

ct
(34)



Analyzing the dynamics: the phase diagram

Illustration of a 2-dimensional dynamical system

Idea: see how ct and kt evolve over time at different

positions in the (ct, kt)-space

Here: stick to parametric example in (34)

To find (∆ct = 0)-locus, set ∆ct = ct+1 − ct = 0:

(∆ct = 0)-locus: ct = k
ρ
t − n(αρ)

1
1−ρ (35)

To find (∆kt = 0)-locus, set ∆kt = kt+1 − kt = 0:
(∆kt = 0)-locus: ct = k

ρ
t − nkt (36)



When ct > k
ρ
t − n(αρ)

1
1−ρ: ct is increasing over time

When ct < k
ρ
t − n(αρ)

1
1−ρ: ct is decreasing over time

When ct < k
ρ
t − nkt: kt is increasing over time

When ct > k
ρ
t − nkt: kt is decreasing over time

Exercise:

(a) Show that the diagram is drawn under the as-

sumption αn < 1.

(b) Given the utility function in (27), why must we

assume αn < 1?
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Associated with each starting value (c0, k0) the dy-

namical system assigns a (unique) trajectory

To ensure that we have selected an optimal and fea-

sible trajectory we impose a so-called Tranversality

Condition. This essentially amounts to being on a

trajectory leading to the steady state; called the sad-

dle path

• Trajectories on which kt becomes negative are not
feasible.

• Trajectories on which ct goes to zero are not op-
timal because Inada condition on utility function

says limc→0 u0(c) = ∞. Since kt is positive and
finite, so is the interest rate: Euler Equation can-

not hold.

Given k0, there is a unique c0 on the saddle path



Sustained exogenous growth

So far: kt converges to k, and yt to y = f(k)

Per-capita income stops growing in steady state: no

sustained growth

Easy to fix; rename variables: Lt = At eLt
At = efficiency level of each worker

eLt = population (i.e., what was denoted Lt before)

Growth rates:

At+1 = (1 + g)AteLt+1 = (1 + en) eLt
Lt+1 = (1 + en)(1 + g)Lt ≡ (1 + n)Lt (37a)

Solving model (Ramsey or Solow) same as before;

same dynamics for kt = Kt/Lt



News: lower-case variables now denote levels per ef-

fective worker: yt = Yt/Lt = Yt/(At eLt)
In steady state with non-growing income per effective

worker (yt = y) income per worker, Yt/ eLt = Aty,

grows at rate g

Shortcoming: sustained growth is exogenous, not ex-

plained in the model



Sustained endogenous growth

What stops per-capita income from growing in previ-

ous settings?

Answer: the assumption that limk→∞ f 0(k) = 0

Instead assume that

lim
k→∞ f

0(k) = A > δ + n

s
(38)

Endogenous growth in a Solow setting

Recall:

lim
kt→∞

φ0(kt) = 1−δ
1+n +

s
1+n lim

kt→∞
f 0(kt)

= 1−δ
1+n +

sA
1+n > 1

(39)

Define the growth rate of kt as

γt =
kt+1 − kt

kt
(40)



The “steady state” growth rate is: γ = limkt→∞ γt

Called a balanced growth path

Use (39):

1 + γ = limkt→∞
kt+1
kt

= limkt→∞
φ(kt)
kt

= limkt→∞
φ0(kt)
1 =

n
1−δ
1+n +

sA
1+n

o
> 1

(41)

from l’Hôpital’s Rule and the assumption about A in

(38)

Rewriting:

γ =
sA− (δ + n)

1 + n
(42)

Higher saving generates faster growth (before: only

level effects)
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Endogenous growth in a Ramsey setting

Consider example logarithmic utility and full depreci-

ation. Using Euler Equation in (33):

u0(ct)
u0(ct+1)

=
ct+1
ct

= αf 0(kt+1) (43)

Again: assume limk→∞ f 0(k) = A

Define the rate of saving as

st = 1− ct

f(kt)
(44)

On a balanced growth path st must be between 0 and

1; denote it s ∈ (0, 1)

On a balanced growth path the consumption-capital

ratio becomes:

lim
kt→∞

ct

kt
= (1− s) lim

kt→∞
f(kt)

kt
= (1− s)A (45)



implying that on BGP consumption and capital grow

at same rate: ct+1/ct = kt+1/kt ≡ 1 + γ

Use (43):

γ = αA− 1 (46)

Higher weight on the future (higher α) generates faster

growth (before: only level effects). Similar to growth

effects in Solow model from changes in s

Solving for steady state rate of saving: use (45), (46),

and budget constraint:

kt+1
kt| {z } =

→1+γ=αA

1

n

f(kt)kt| {z }
→A

− ct

kt|{z}
→(1−s)A

 (47)

gives s = αn



The AK model

Simple endogenous growth model: Cobb-Douglas with

capital share = 1

F (K,L) = AK, so that f(k) = Ak, for all k

Called the AK model

In Solow setting:

kt+1
kt

=
sA+ 1− δ

1 + n
> 1 (48)

Similar to (41); now f(kt) = Akt in each period not

only in the limit



Endogenous growth model with human capital

Let there be two accumulable factors: physical capital

(K), and human capital (H)

Simple Cobb-Douglas example; capital share = α.

F (K,H) = KαH1−α (49)

Let rH and rK denote the return to human and phys-

ical capital, respectively

Same depreciation rate, δ

Profit maximization:

rH = (1− α)
³
K
H

´α − δ

rK = α
³
K
H

´α−1 − δ

(50)



In equilibrium both assets must earn same return:

rH = rK = r

Gives constant physical-to-human capital ratio:

H =
µ
1− α

α

¶
K (51)

Substitute back into production function:

F (K,H) = Kα
h³
1−α
α

´
K
i1−α

=
³
1−α
α

´1−α
K ≡ BK

(52)

Same structure as in AK model; now the “BK” model

Same endogenous growth results



Testing growth models against data

If interpreted literally neo-classical growth models pre-

dict countries grow faster the farther they are from

steady state

That is: poor countries should grow faster than (and

be catching up with) rich countries

Called (absolute) convergence; not consistent with

data: see Barro (1997, Figure 1.1)

However: most economies differ from each other in

exogenous parameters: e.g. n, s, and/or the pro-

duction function (different Total Factor Productivity,

TFP)

Must reinterpret convergence prediction

Conditional convergence: economy grows fast if its

far below its “own” steady state



Some notation:

Initial income=y0, steady state income=y
∗

Linear approximation around steady state: growth pro-

portional to (y∗ − y0)

Fast growth if y0 small, or y
∗ large

Problem when testing theory: countries with low y0
(i.e. developing countries) often have low y∗

Need to measure y∗

From model: y∗ depends on e.g. n, s; so we can

calibrate y∗ to see how fast a country “should” grow
according to model. Residual = TFP. Called growth

accounting



But harder to measure production function: taxes,

market distortions, rule of law, political freedom, terms

of trade

Empirical approach: cross-country growth regressions

Idea: let each country on planet Earth be one “exper-

iment,” one observation

Growth model thought of as the data generating pro-

cess

Data:

GDP/capita and more in the Summer and Heston’s

World Penn Tables

http://datacentre.chass.utoronto.ca/pwt/



Other data from other sources, e.g. Barro and Lee for

schooling

In all: data for not more than some hundred countries

To get more observations (higher degrees of freedom)

create a panel: each country measured over several

periods (typically decades)

Why not one period = one year? Error terms not seri-

ally uncorrelated; want to measure growth, not cycles

The regression equation

See Barro (1997)

Left-hand side: annual growth rate across different coun-

tries and periods (e.g. 1960 -70, 1970-80, and 1980-

90)



Let Yi,t = GDP/capita in country i period t

yi,t = ln(Yi,t)

gi,t = annual % growth rate

n = number of years

yi,t+1 − yi,t
n

= ln(1 + gi,t) ≈ gi,t

Approximation close if gi,t small (which it is, usually

a couple of %)

Right-hand side: intercept, initial income, things con-

trolling for y∗ — call them xi,t, and an error term

Regression equation:

gi,t = β0 + β1yi,t + β2xi,t + εi

Testing for conditional convergence: poor countries

grow faster than rich if you control for the steady

state they converge to



Convergence means: β1 < 0

Barro finds bβ1 to be highly significant
More generally:

If not controlling for anything else (leaving out the

xi’s):
bβ1 typically insignificant (and/or wrong sign)

If controlling for things that proxy for y∗ (letting the
xi’s enter on the right-hand side):

bβ1 highly signifi-
cant

Conclusion: conditional convergence, but no absolute

convergence

Speed of convergence

bβ1 = −.025; means gap closes by 2.5% per year

Gap T years ahead = (1− .025)T of gap today.

How long time to half the gap? Set (1−.025)T = 1/2,
solving for T , gives 27 years



Galton’s fallacy

If poor countries grow faster than rich, does that imply

a negative time trend in inequality? Not necessarily;

called Galton’s fallacy

Assume −1 < β1 < 0 in regression equation (holds in

data) and disregard the xi,t’s

Recall gi,t = (yi,t+1 − yi,t)/n
yi,t+1 − yi,t = nβ0 + nβ1yi,t + nεi

Say εi ∼ (0,σε). Write period-t + 1 variance in log

GDP/cap, as function of that in period t:

Vt+1 =(1 + nβ1)
2| {z }

<1

Vt + n
2σε

Steady state variance: V ∗ = σε/[1− (1 + nβ1)2]
Variance may increase or decrease, depending on where

Vt is relative to V
∗ (draw 45-◦ diagram to see)



Other findings

Coefficient on schooling > 0 and significant (how

about male vs. female schooling?)

Coefficient on fertility < 0 and significant

Coefficient on government consumption < 0 and sig-

nificant

Coefficient on rule of law > 0 and significant

Coefficient on terms of trade > 0 and significant

Coefficient on regional dummies (Latin America, Africa)

insignificant: other variables explain why they don’t

grow

Summary: more schooling, lower fertility, smaller gov-

ernment, and better rule of law (e.g. less corruption)

all good for growth



Common mistakes when running cross-country growth

regressions:

• Using total GDP instead of GDP/capita

— Like comparing heights of Canadians and Swedes

and summing up the height of all Swedes and

all Canadians (standing-on-shoulders compar-

ison)

• Using current prices instead of constant prices
(not correcting for inflation)

• Series should be PPP adjusted; do not use current
exchange rates

From World Penn Tables use (for example):

REAL GDP PER CAPITA (CONSTANT PRICE: LASPEYRES)

(unit $ CONSTANT)



Discussion

New cross-country data (World Penn Tables) gener-
ated increased interest in growth models in the 80’s

Useful insights, but also many problems, econometric
and others (see Mankiw 1995)

Simultaneity: right-hand side variables not exogenous
Solution: find exogenous instruments, often lagged
variables (cf Barro 1997); Acemoglu et al. (AER
2001) use European settler mortality rates

Multicollinearity: explanatory variables correlated with
each other; Mankiw: “those countries that do things
right do most things right, and those countries that
do things wrong do most things wrong.”

Degrees-of-Freedom: few observations, only about 100
countries
Solution: use panels; but that gives no new indepen-
dent observations; also problem with business cycles
vs. growth



Club convergence

Consider setting with multiple steady states:

below some threshold: convergence to poverty trap

above that threshold: convergence to rich steady state

Implications for the distribution of per-capita income:

emerging twins peaks

Supported by data: Quah (1997)
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Taking longer perspective

Cross-country growth comparisons from1870 until to-

day: Pritchett (1997)

1870 earliest year from when we have data; also “birth”

date of many countries; data for 17 countries (Pritch-

ett 1997, Table 1)

All rich today: “advanced capitalist” countries

Selectivity problem: data set consists of those which

are rich today, and were rich 1870 (Europe), and those

which are rich today, and were poor 1870 (Japan)

No data for countries that were rich 1870, but (rel-

atively) poor today (Argentina), or countries which

were poor in 1870, and poor today (India)

Convergence almost tautological: poor in 1870 must

have grown faster since they’ve joined the “rich today”

group



Prichett’s approach: when 1870 data not available,

set it at lower bound for per-capita income (subsis-

tence level for people to survive)

Calculate various measures of dispersion of implied in-

come distribution, and compare to the same measure

today — which we know from data

Result: Table 2 in Pritchett

Conclusion: no convergence but “divergence, big time”



Unified approach

Explaining both divergence and convergence

Lucas’ (2002) story: countries make random exoge-

nous take-offs from stagnant steady state to sustained

growth path

Long time ago: all countries at subsistence consump-

tion; no gap

By 1870: some countries had started growing; others

had not; gap starts increasing

Today: growth club more ahead of non-growers — but

more countries in growing club

Countries which recently joined the growing club grow

faster (due to convergence within the growing club)

Gap has increased so far, due to growers getting more

ahead of non-growers

Future: as all join the growing club the income gap

must start to decrease



Simulating time paths: Figures 1 - 3 in Lucas

World average growth rate first increases over time,

as more and more countries start growing; poor coun-

tries grow faster then starts declining, as more rich

countries and rich countries grow slower

Over time: humpshaped pattern

Standard deviation in per-capita income is increasing

at first as the early growers take off; decreasing later as

more countries start growing, catching up with leaders

Over time: humpshaped pattern

Summary: So far: Divergence, Big Time! Sooner

or later: Convergence. More “optimistic” view than

Pritchett



The distribution of individual incomes

So far: usually one country = one data point. What

if we think of individuals as data points?

Consider hypothetical world distribution of income as

below

3 poor countries with population = 1 each (Sub-Saharan

Africa)

GDP/cap levels = 1, 2 and 3, resp.

1 semi poor country with population = 10 (China)

GDP/cap = 4

1 rich country with population = 3.8 (USA)

GDP/cap = 10

No income dispersion within each country
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Suppose China grows from GDP/capita = 4 to 5?

If 1 country = 1 observation

Initial mean = (1+2+3+4+10)/5=4

China growing (=departing from mean) raises inequal-

ity

If each country’s weight = population size: initial

mean=5

China growing (approach mean) lowers inequality

Moreover: roughly this has happened

Still not perfect measure: all persons within country

not identical; would like each person = one observa-

tion

Sala—Martin (2002) starts by estimating distributions

of income within countries, then aggregates to one

world income distribution.



Hard due to lack of data; requires some econometric

fiddling. Here: focus on results

Sala’s Figure 2 shows how distributions for different

countries have evolved over time; most have grown,

but not all (e.g. Nigeria); some have twin peaks,

including the US

Figure 3 aggregates all distributions into one world

distribution; in 1970 almost twin peaks, in 1990 much

smoother; growth of China and India even out the

hump

Figure 4 shows world distribution in one single diagram

(as pdf and cdf)

Poverty rates (i.e., fraction living under $1 and $2)

have fallen: see area to the left of threshold in pdf

diagram

1998 first-order stochastically dominates 1970, mean-

ing that at any level of GDP/cap, smaller mass lived



below that level in 1998 than 1970 (however 1998

does not dominate 1990)

Figure 6: poverty head counts = # people living be-

low $1 and $2 (not fraction), has also fallen

Figure 10 shows different measures of income inequal-

ity: all have fallen but not monotonically; e.g. vari-

ance in log income starts to increase in the 90’s


