
Problems for the graduate M.A. course in Economic Growth
York University, Winter 2004

Problem Set 1 (due in class January 26th, 2004):
Solve problems 1 to 5 below.

Problem Set 2 (due in class February 9th, 2004):
Solve problems 6 to 10 below.

Problem Set 3, which we make the last one (due in class March
29th, 2004):
Solve problems 11 to 16 below.

(1) For this problem you may use a mini calculator.
(a) If an economy’s per-capita income grew at a constant rate every year

for 10 years and doubled in that period, what was the annual growth rate?
(b) Per-capita income of some economy A grows an annual rate of 3%,

and that of another economy B at 2%. If B’s per-capita income is initially
double that of A, how many years does it take A to catch up with B.

(2) Use a 45◦-diagram to illustrate the dynamics of the difference equa-
tion, xt+1 = φ(xt), in the parametric cases below. Be careful to draw the
graphs of φ(xt) correctly.
(a) φ(xt) = a + bxt, where a > 0 and b ∈ (0, 1).
(b) φ(xt) = a(xt)

b, where a > 0 and b ∈ (0, 1).
(c) φ(xt) = max{0, 2√xt − a}, where a ∈ (0, 1).
(d) φ(xt) = axt/(b+ xt), where a > b > 0.
(e) φ(xt) = axt − bx2t , where a > 1 and b > 0.

(3) For each of the cases in (2), find analytical expressions for all steady-
state equilibria (including the trivial zero steady state). Also, check analyt-
ically (without using a diagram) if they are (locally) stable or unstable. Is
any of the steady states oscillatory?

(4) Consider the difference equation: xt+1 = 2xt(2 − xt). Here your
answers from (2) and (3) (e) should be useful.
(a) Are there any stable steady states to this dynamical system?
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(b) If we start off with x0 = 2, what can we say about the whole time
path for xt? That is, find a sequence {xt}∞t=0 which solves this difference
equation for the initial value x0 = 2.
(c) Do the same as in (b) above, but now instead let x0 = 1.
(d) Now assume that x0 ∈ (0, 2), but x0 6= 1. Use your favorite program

for simple numerical calculations (like Excel) to generate a time path for
xt. Try a couple of different start values, and run the simulation for 20-30
periods. Generate a graph showing the time path for xt.

(5) Consider the profit maximization problem faced by an atomistic firm,
taking wages, w, and the real interest rate, r, as given: max

K,L
π(K,L), where

π(K,L) = F (K,L)− wL− (r + δ)K. (1)

This is a two-variable maximization problem so the second-order condi-
tion is a little more complicated compared to the single-variable case. To see
this, rewrite it as a single variable maximization problem, by first defining
optimal K as a function of L. That is, let

K(L) ≡ argmax
K
{π(K,L)}

and

π(L) ≡ π (K(L), L) .

Let L∗ ≡ argmaxL {π(L)}, and K∗ ≡ K(L∗). We can now think of the
profit maximization problem as a single-variable problem, max

L
π(L), with

first-order condition (for a local maximum) π0(L∗) = 0, and second-order
condition π00(L∗) ≤ 0.
To denote partial derivatives of multiple-variable functions we use the

notation ∂F (K,L)
∂K

= FK(K,L),
∂2F (K,L)

∂K2 = FKK(K,L), etc.
(a) Find an expression forK 0(L) in terms of partial derivatives of F (K(L), L).
(b) Express the second-order condition π00(L∗) ≤ 0 in terms of partial

derivatives of F (K∗, L∗). Is FKK(K∗, L∗) < 0 and FLL(K∗, L∗) < 0 sufficient
for the second-order condition to hold?
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(6) (Azariadis and Drazen 1990). Introduce a threshold externality into
the Solow model, by letting total factor productivity depend on kt:

f(kt) = A(kt)k
α
t ,

where

A(k) =

(
A if k ≥ bk
A if k < bk ,

and A > A and bk > 0.
(a) Draw the graph of f(kt).
(b) This production function exhibits a so-called non-convexity. In what

sense?
(c) Find conditions on exogenous parameters (such as A, A, and bk) under

which the dynamics display multiplicity of steady states.

(7) Galor (1996) considers a version of the Solow model where saving out
of labor income, sw, differs from that of capital income, sr. This gives the
following dynamic equation for kt:

kt+1 =
sw{f(kt)− f 0(kt)kt}+ srf 0(kt)kt + (1− δ)kt

1 + n
.

[Here we follow Galor’s formulation and let capital income be given by f 0(k)k,
rather than {f 0(k) + 1− δ}k.] We can write the (net) growth rate of kt, as

γt ≡
kt+1 − kt
kt

= ξ(kt)− (n+ δ

1 + n
),

where

ξ(kt) =
sw
h
f(kt)
kt

i
+ (sr − sw)f 0(kt)
(1 + n)

.

(a) Verify that any steady state must satisfy Galor’s Eq. (3), i.e., swf(k)+
(sr − sw)f 0(k)k = (n+ δ)k.
(b) Show that lim

k→0
ξ(k) =∞ and lim

k→∞
ξ(k) = 0. [The Inada conditions on

f(k) are assumed to be satisfied.]
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(c) Assume that ξ0(k) > 0 for some k > 0. Use the result in (d) above to
demonstrate that — for some n and δ — the model generates multiple steady
states. Illustrate in a diagram, and show which steady states are stable.

(d) Show that ξ0(k) > 0 is equivalent to (sr − sw)f 00(k) − sw
h
w(k)
k2

i
> 0,

where w(k) denotes the wage rate. What is a necessary condition on sw and
sr for there to be multiple steady states?

(8) This problem shows that the Diamond model can generate multiple
steady states, and refers to the example in Azariadis (1994, pp. 203-204).
Let production exhibit constant elasticity of substitution (CES), i.e.,

F (K,L) = A[aK−ρ + (1− a)L−ρ]− 1
ρ ,

where 1/(1 + ρ) is the elasticity for substitution between capital and labor.
Assume that this elasticity is less than one, i.e., ρ > 0. [More generally it
would hold that ρ ∈ (−1,∞).]
Assume logarithmic utility, so that saving is some constant fraction of

labor income. Show that the dynamics would be characterized by multiple
steady states for some level of total factor productivity A.

(9) Consider the Barro and Becker (1989) model.
(a) Rewrite the budget constraint for Ct [see (59) in the notes] in terms

of Nt, Kt, Nt+1, Kt+1, wt, βt, and rt.
(b) Using the notation Vt = N

1−ε−σ
t Cσ

t + αVt+1 (see the notes) formulate
a Bellman equation where the value function is given by V (Kt, Nt).
(c) From the first-order condition for Kt+1, and Envelope, show that:

(Ct/Ct+1)
σ−1 = αn1−ε−σt (1 + rt+1).

(d) From the expression in (c), derive the Euler equation for (ct/ct+1)
σ−1

[see (60) in the notes].
(e) From the first-order condition for Nt+1, Envelope, and the expression

in (c), derive (65) in the notes:

ct+1 =

µ
σ

1− σ − ε

¶
[βt(1 + rt+1)− wt+1]

(10) Consider the function determining unconstrained fertility in the Ga-
lor and Weil (1996) model:

ψ(kt) = γ

·
2 +

b[2− ψ(kt)]
α

(1− α)kαt

¸
.
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Show that ψ0(kt) < 0.

(11) Consider the Kremer model, presented in class. Period-t output is
given by

Yt = AtL
1−αP α

t .

Technology evolves according to

At+1 = BA
1−β
t P β

t ,

and (here’s the news) population evolves as follows:

Pt+1 = n

µ
Yt
Pt

¶
Pt,

where n(·) gives fertility as a function of per-capita income, Yt/Pt. We let y
be per-capita income at which population is constant.
(a) Find a parametric example for n(·), which contains y, and which

satisfies these three conditions: (i) n0 (Yt/Pt) > 0; (ii) n (y) = 1; and (iii) is
isoelastic, meaning ln[n(x)] is linear (or affine) in ln x.
(b) Use your answer in (a) to write a dynamical system for At and Pt.

That is, find an equation for At+1 in terms of At and Pt and exogenous
variables, and an equation for Pt+1 in terms of At and Pt and exogenous
variables.
(c) Draw a phase diagram with At on the vertical axis, and Pt on the

horizontal axis. Draw the loci along which ∆At = 0, and ∆Pt = 0, and show
the dynamic paths for At and Pt for different start values.
Hint: If you got the phase diagram right it should have a “threshold

curve,” which looks like a saddle path. Economies starting off below this will
vanish (At and Pt will go to zero); and economies starting off above it will see
At and Pt growing without bounds. Since these is no transversality condition
imposed there is no reason to believe that any economy would position itself
on the saddle path.

(12) This question refers to Diamond’s “Guns, Germs, and Steel.” What
is the difference between a proximate and an ultimate explanation?

(13) Consider the model(s) in Lucas (2002, Ch. 5, Sec. 3), and the case
with logarithmic utility. When there are no property rights to land, we saw
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that we could write the first-order condition for nt as

(1− β)
k

ct
= βγ

1

nt
.

(a) Use this first-order condition and the budget constraint to find an
expression for nt as a function of f(xt) and exogenous parameters.
(b) Let f(xt) = Axαt , and recall that xt+1 = xt/nt. Derive a difference

equation for xt and illustrate the dynamics and the steady state in a 45
◦-

diagram. Is the steady state stable?
(c) How does the steady state level of xt depend on γ, A, and k? What

is the intuition?

Consider next the case where agents have property rights to land. With
logarithmic utility and Cobb-Douglas production it can be seen that the
value function takes the following form:

W (xt) = Γ+ Φ ln xt,

where Γ and Φ are constants that depend on parameters of the model.
(d) Using this expression for the value function, show that optimal fertility

becomes

nt =

µ
Ψ

k

¶
Axαt ,

where Ψ depends on β, γ, and Φ.
(e) Substituting optimal nt back into the max expression in the Bellman

equation, we can write the value function,W (xt), as a linear function of lnxt.
Having done so, show what the unknown Φ must be. You may check that it
fits with Lucas’ (2002, p. 133) result.

(14) Use your favorite program for simple numerical calculations (like
Excel) to replicate the time paths for St and Lt in the simulations of the
Brander-Taylor model shown in class. Use the numerical values in the notes.

(15) Consider the model of Galor and Weil (2000). Recall that optimal
education, et+1, is given by

G(et+1, gt+1) = (τ + et+1)he(et+1, gt+1)− h(et+1, gt+1) = 0
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if et+1 > 0, and et+1 = 0 if G(0, gt+1) < 0.
Now consider the parametric example used in the notes:

h(et+1, gt+1) =
et+1 + ρτ

et+1 + ρτ + gt+1
,

where ρ ∈ (0, 1).
(a) Show that optimal education in this parametric case is given by:

e(gt+1) = max
n
0,
p
gt+1τ (1− ρ)− ρτ

o
(Disregard the 0 argument in the max expression if you find that confusing;
just derive e(gt+1) =

p
gt+1τ(1− ρ)− ρτ assuming that et+1 > 0.)

(b) Find bg, i.e., the level of gt+1 below which e(gt+1) = 0.
(c) Find a parametric expression for h(gt+1) ≡ h(e(gt+1), gt+1). In words,

this is the level of human capital in period t+ 1 as a function technological
progress from period t to t + 1, taking into account both the erosion effect
from technological progress and parents’ optimal response to it. The answer
should look like this:

h(gt+1) =

½
something containing ρτ and gt+1 if gt+1 ≤ bg

something containing
p

τ(1− ρ) and
√
gt+1 if gt+1 ≥ bg

where bg is the solution you found in (b).
Next, as in the notes, let technological progress take this functional form:

gt+1 = g(et, L) = (et + ρτ)a(L)

where a0(L) > 0 and limL→∞ a(L) ≡ a∗ ∈ (0,∞).
(d) If a(L) is large enough there exists a steady state (e, g) at which e > 0.

Find parametric expressions for e and g.
(e) Use your answer in (c) to find the corresponding level of human capital,

h(e, g), as a function on a(L).
(f) Use the expressions for h(et+1, gt+1) and g(et, L) above to find an

expression for human capital in a steady state where e = 0. That is, find
h(0, g(0, L)). Does human capital in the steady state with zero education
differ from the steady state with positive education?
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(g) At what level of a(L) does the economy move from the steady state
with no education and slow technological change, to the one with positive
education and faster technological change?

(16) Consider the model of Lagerlöf (2003).
(a) Using the functional form for A(Pt) given in the paper and in the

lecture notes, find

lim
Pt→∞

A(Pt).

(b) Show how to derive the expression for optimal education time:

ht =
1

1− δ

·
v(δ − ρ)− L

A(Pt)(L+Ht)

¸
.

(c) Use the above expression for ht, and find what ht approaches as both
Pt and Ht go to infinity.
(d) Use your result in (c) to find what Bt approaches as Pt and Ht go to

infinity.
(e) Use the expression for human capital accumulation,

Ht+1 = A(Pt) [L+Ht] (ρv + ht) ,

to derive an expression for the gross growth rate of human capital, Ht+1/Ht,
in an economy where both Pt and Ht exhibit sustained growth (i.e., both
approach infinity).
(f) In an economy where both Ht and Pt exhibit sustained growth, and

Ht grows faster than Pt, the survival rate, Tt, goes to 1. Thus, the birth rate
derived in (d) determines the gross growth rate of Pt. Derive a parametric
condition for this type of growth path to exist.
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Solutions to selected problems

(1) (a) The annual growth rate was about 7.18% (since 1.071810 ≈ 2);
(b) It takes ln(2)/ ln(1.03

1.02
) ≈ 71 years.

(2)
(c) φ(xt) coincides with the xt-axis for xt ∈ [0, (a/2)2]. Thereafter the

slope is positive and diminishing, intersecting the 45◦-line twice.
(d) Diminishing slope; should be drawn so that φ(xt) is bounded from

above by a.
(e) Should be hump-shaped, peaking at xt = a/2b.

(3)
(a) One unique steady state, x = a/(1−b). Stable since φ0(x) = b ∈ (0, 1).
(b) Two steady states: x = 0, and x = a

1
1−b . x = 0 is unstable since

limx→0 φ0(x) =∞. x = a 1
1−b is stable since

φ0(x) = ab (x)b−1 = ab
³
a

1
1−b
´b−1

= b ∈ (0, 1).

(c) There are three steady states. First x = 0, which is stable because
φ0(0) = 0. The other two are given by x = 1 − a + 2√x − 1. Let z ≡ √x;
this gives z2 − 2z + 1 = (z − 1)2 = 1 − a, which has roots z = 1 + √1− a
and z = 1 − √1− a. This gives the two remaining steady states as x∗ =
{1 +√1− a}2 > 1 and x∗∗ = {1 − √1− a}2 ∈ (0, 1). Since φ0(x) = 1/√x,
x∗ is stable and x∗∗ unstable.
(d) There are two steady states. First x = 0, which is unstable, since

φ0(x) = ab
(b+x)2

, which gives φ0(0) = a/b > 1. The other steady state is given
by x = a− b, which is stable, since φ0(a− b) = ab

(b+a−b)2 ,= b/a ∈ (0, 1).
(e) There are two steady states. First x = 0, which is unstable, since

φ0(x) = a − 2bx, so φ0(0) = a > 1. The other is given by x = ax − bx2
or 1 = a − bx, or x = (a − 1)/b. To check stability, note that φ0(a−1

b
) =

a−2(a−1) = 2−a. The steady state is stable if, and only if, 2−a ∈ (−1, 1).
The upper bound is OK since a > 1 is assumed. The lower bound requires
that a < 3. The steady state will be oscillatory if 2− a < 0, i.e., if a > 2.
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(4).
(a) No. See solution to (3) (e) above, setting a = 4 and b = 2.
(b) Starting off with x0 = 2, xt goes to the zero steady state in the next

period and stays there forever. That is: {x}∞t=0 = {2, 0, 0, ...}.
(c) Starting with x0 = 1 gives x1 = 2 and the zero steady state forever

after that. That is: {x}∞t=0 = {1, 2, 0, 0, ...}.
(d) I should have added that x0 6= 1.5, as well as x0 ∈ (0, 2), and x0 6= 1.

(The unstable steady state is 1.5.) Then the time path for xt should display
chaotic behavior; it should look a bit like below.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

(5)
(a) From the definition of K(L) the first-order condition for K must hold

at K = K(L). So we can write πK(K(L), L)− (r + δ) ≡ 0. Thus, using the
Implicit Function Theorem, we get

K 0(L) = − πKL(K(L), L)

πKK(K(L), L)
= −FKL(K(L), L)

FKK(K(L), L)
(2)

where the second equality comes from 1.
(b) First find π0(L):

π0(L) = πK(K(L), L)K
0(L) + πL(K(L), L)
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Then find π00(L):

π00(L) = πK(K(L), L)K
00(L) + πKL(K(L), L)K

0(L) + πKK(K(L), L){K 0(L)}2
+πLL(K(L), L) + πKL(K(L), L)K

0(L)
(3)

where the first three terms are the derivative of πK(K(L), L)K
0(L) with

respect to L, and the last two terms are the derivative of πL(K(L), L) with
respect to L.
Next, we evaluate π00(L) at L = L∗. Since K∗ = K(L∗), this amounts to

evaluating the terms on the right-hand side of (3) atK∗ and L∗, and we know
that πK(K

∗, L∗) = 0 by definition. Using (2) the remaining terms become:

π00(L∗) = 2πKL(K∗, L∗)K 0(L∗) + πKK(K
∗, L∗){K 0(L∗)}2 + πLL(K

∗, L∗)
= −2 [πKL(K∗,L∗)]2

πKK(K∗,L∗)
+ [πKL(K

∗,L∗)]2
πKK(K∗,L∗)

+ πLL(K
∗, L∗)

=
³

1
πKK(K∗,L∗)

´
[πLL(K

∗, L∗)πKK(K∗, L∗)− [πKL(K∗, L∗)]2]

=
³

1
FKK(K∗,L∗)

´
[FLL(K

∗, L∗)FKK(K∗, L∗)− [FKL(K∗, L∗)]2] .

Since FKK(K
∗, L∗) < 0, for π00(L∗) ≤ 0 to hold, the production function

must be such that

FLL(K,L)FKK(K,L)− [FKL(K,L)]2 ≥ 0

in optimum.

(6)
(a) The production function look roughly as below, making a ‘jump” at

k = bk.
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k

)k(f

k̂

(b) The production possibility set,
©
(k, y) ∈ R2

+ : f(k) ≥ y
ª
, is non-convex,

meaning a linear combination of two points in the set need not fall within
the set.
(c) Calculating the two steady states associated with A and A, bk must

fall in between these. This gives:

µ
sA

n+ δ

¶ 1
1−α

< bk ≤ µ sA

n+ δ

¶ 1
1−α
.

(8) The intensive-form production function can be written as f(k) =

A[ak−ρ + (1− a)]− 1
ρ .

First we can see that: f 0(k) = aA−ρ
³
f(k)
k

´1+ρ
.

Then some tedious algebra gives us: w(k) = f(k) − f 0(k)k = (1 −
a)A−ρ[f(k)]1+ρ.
Implying that: lim

k→∞
w(k) = (1− a)− 1

ρA > 0.

And: lim
k→0
w0(k) = 0.

In a standard Diamond setting it can be seen that kt+1 =const.×w(k),
so given the behavior of w(k) above we can get multiple steady states of we
play around with A.

(9)
(a) Ct = Ntwt + (1 + rt)Kt − βtNt+1 −Kt+1. Note that Nt+1 = ntNt.
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(b) The Bellman equation becomes:

V (Kt, Nt) = max
Nt+1,Kt+1

·
N 1−ε−σ
t (Ntwt + (1 + rt)Kt − βtNt+1 −Kt+1)

σ

+αV (Kt+1, Nt+1)

¸

(c) The first-order condition forKt+1 givesN
1−ε−σ
t σCσ−1

t = αVK(Kt+1, Nt+1).
Using Envelope, we can write VK(Kt, Nt) = N1−ε−σ

t σCσ−1
t (1 + rt) (plus

zero terms). Forwarded one period, and using Nt+1 = ntNt, this gives:
(Ct/Ct+1)

σ−1 = αn1−ε−σt (1 + rt+1).
(d) Using Ct = ctNt, and Nt+1 = ntNt, the Euler equation follows from

the expression in (c): (ct/ct+1)
σ−1 = αn−εt (1 + rt+1).

(e) The first-order condition for Nt+1 gives

N1−ε−σ
t σCσ−1

t βt = αVN(Kt+1, Nt+1). (4)

Using Envelope gives

VN(Kt, Nt) = (1− ε− σ)N 1−ε−σ
t Cσ

t

1

Nt
+N 1−ε−σ

t σCσ−1
t wt

= N1−ε−σ
t σCσ−1

t

µ1− ε− σ

σ

¶
Ct
Nt|{z}
ct

+ wt


(plus zero terms). Forwarding one period, using the first-order condition in
(4) and Nt+1 = ntNt, we get

σCσ−1
t βt = α n1−ε−σt| {z }

(Nt+1/Nt)1−ε−σ

σCσ−1
t+1

·µ
1− ε− σ

σ

¶
ct+1 + wt+1

¸

Next using (Ct/Ct+1)
σ−1 = αn1−ε−σt (1 + rt+1), we get

ct+1 =

µ
σ

1− ε− σ

¶
[βt(1 + rt+1)− wt+1] .

(11)

(a) For example: n
³
Yt
Pt

´
=
³
Yt/Pt
y

´γ
, where γ > 0.
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(b) If choosing the same form for n(·) as I chose in (a), the dynamical
system should look as follows:

At+1 = BA1−βt P β
t ,

Pt+1 =

·
AtL

1−αPα−1
t

y

¸γ
Pt

(c) The (∆At = 0)-locus can be written:

At =
¡
B1/β

¢
Pt

and the (∆Pt = 0)-locus as

At =

µ
y

L1−α

¶
P 1−αt

The phase diagram should look as below.

tP

tA

0=∆ tA

0=∆ tP
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(13)

(a) (1− β)knt = βγct = βγ [f(xt)− knt]⇒ nt =
βγ

1−β(1−γ)
f(xt)
k

(b) xt+1 = xt/nt =
xt

βγ
1−β(1−γ)

Axαt
k

= k[1−β(1−γ)]
βγA

x1−αt . The steady state is

stable.

(c) Setting xt+1 = xt = x
∗ we get x∗ =

h
k[1−β(1−γ)]

βγA

i 1
α
. A rise in γ lowers

x∗ (more weight on children makes population density higher); a rise in A
lowers x∗ (more productive land makes population density higher); a rise in
k leads to higher x∗ (higher cost of rearing children leads to lower population
density).
(d) FOC for nt:

(1− β) [Axαt − knt]−1 k = β

·
γ(nt)

−1 + Φ
1

xt+1

−xt
n2t

¸
.

Multiplying through by nt and using xt+1 = xt/nt we get (1−β) [Axαt − knt]−1 knt =
β (γ − Φ). Solving for nt we get

nt =

µ
A

k

¶·
β (γ − Φ)

1− β − βγ + βΦ

¸
| {z }

=Ψ

xαt

(e) The value function is given by W (xt) = (1 − β) ln ct + βγ lnnt +
βW (xt+1), where ct, nt, and xt+1 are all substituted for by using the expres-
sion for optimal nt above:

W (xt) = (1− β) ln

=Axαt −knt=ctz }| {
{Axαt [1−Ψ]}

+βγ ln

=ntz }| {·
ΨAxαt
k

¸

+β

Γ+ Φ ln

=xt+1=xt/ntz }| {½
kx1−αt

AΨ

¾
| {z }

=W (xt+1)

.
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This can written as a linear function of lnxt:

W (xt) = constant

+{(1− β)α + βγα + βΦ(1− α)}| {z }
=Φ

ln xt.

Solving for Φ we get Φ = α 1−β+βγ
1−β(1−α) which fits with Lucas’ answer (p. 133).

(15)
(a) First note that

he(et+1, gt+1) =
gt+1

[et+1 + ρτ + gt+1]
2 .

Setting G(et+1, gt+1) = 0, or (τ + et+1) he(et+1, gt+1) = h(et+1, gt+1), we get

(τ + et+1) gt+1

[et+1 + ρτ + gt+1]
2 =

et+1 + ρτ

et+1 + ρτ + gt+1

or

(τ + et+1) gt+1 = [et+1 + ρτ + gt+1] (et+1 + ρτ)

gt+1 [τ + et+1 − et+1 − ρτ ] = [et+1 + ρτ ] (et+1 + ρτ )

gt+1 [τ(1− ρ)] = [et+1 + ρτ ]2

which gives et+1 = e(gt+1) =
p
gt+1τ(1− ρ)−ρτ . If this is something negative

the non-negativity constraint on et+1 binds, in which case et+1 = 0 becomes
the optimal choice. This gives the expression sought for.
(b) Set the unconstrained choice of et+1 to zero; i.e., et+1 =

p
gt+1τ(1− ρ)−

ρτ = 0. The level of gt+1 at which this holds is:

bg = (ρτ)2

τ(1− ρ)
=

ρ2τ

1− ρ
.

(c)

h(gt+1) =


ρτ

ρτ+gt+1
if gt+1 ≤ bg

√
τ(1−ρ)√

τ(1−ρ)+√gt+1
if gt+1 ≥ bg
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(d) g = τ (1− ρ)[a(L)]2; e =
p
gτ (1− ρ)− ρτ = τ (1− ρ)a(L)− ρτ

(e) h(e, g) = 1/[1 + a(L)]
(f) h(0, g(0, L)) = 1/[1 + a(L)], which is the same as in (e)

(g) When g(0, L) = ρτa(L) comes to exceed bg = ρ2τ
1−ρ [see (b)], i.e., when

a(L) > ρ/[1− ρ]. Notably, this condition also ensures that e > 0 and g > bg
in (d).

(16)
(a) lim

Pt→∞
A(P ) = A∗

(b) Substitute optimal fertility, Bt =
¡

α
1+α

¢
1

v+ht
, into the max problem:

max
ht≥0

ln

Ctz }| {
D

½
1− α

1 + α

¾
(L+Ht) +

α ln(Tt)− α ln

½µ
α

1 + α

¶
(v + ht)

¾
+αδ ln[L+ A(Pt) [L+Ht] (ρv + ht)| {z }

Ht+1

]

The first-order condition for ht gives

−α
µ

1

v + ht

¶
+ αδ

A(Pt) [L+Ht]

L+ A(Pt) [L+Ht] (ρv + ht)
= 0

Solving for ht gives

ht =
1

1− δ

·
v(δ − ρ)− L

A(Pt)(L+Ht)

¸
(c) As A(Pt)(L+Ht)→∞, the 2nd term in square brackets vanishes and

ht → v(δ−ρ)
1−δ .

(d) Using Bt =
¡

α
1+α

¢
1

v+ht
and setting ht =

v(δ−ρ)
1−δ we see that Bt on the

sustained growth path equals
¡

α
1+α

¢
1−δ
v(1−ρ) .

(e) Use the production function for human capital:

Ht+1/Ht = A(Pt) [(L+Ht) /Ht] (ρv + ht) .
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With sustained growth in Pt and Ht it holds that (L+Ht) /Ht → 1, A(Pt)→
A∗, and ht → v(δ−ρ)

1−δ , so that on the sustained growth path

Ht+1
Ht

= A∗
µ
ρv +

v(δ − ρ)

1− δ

¶
=
A∗vδ(1− ρ)

1− δ

(f) For Tt → 1 to hold human capital must grow faster than population
so that Ht/Pt approaches infinity. This requires that

Ht+1
Ht

=
A∗vδ(1− ρ)

1− δ
>
Pt+1
Pt

=

µ
α

1 + α

¶
1− δ

v(1− ρ)
,

or

A∗v2δ(1− ρ)2 >

µ
α

1 + α

¶
(1− δ)2
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