Slides on "deeper roots" papers

November 29, 2015

Empirical macro/development often about finding (cross-country) correlations, maybe causation

(Often) not about finding deeper roots

Example: say we find factor X (e.g., democracy) causes development; then why do some countries have factor X and others not?

More ambitious approach: find the deeper (historic) roots that caused factor X

Often requires us to overcome challenges in terms of measuring those deeper factors:

- Data is poor
- Unit of observation not clear (country?); migration

Still important to try

Bockstette, Chanda, and Putterman (2002)

One of the first papers compiling a "deeper roots" variable

Followed by later extensions

Still often cited by others using the data

Idea: create "index of the depth of experience with state-level institutions" (abstract)

Motivation:

- Statehood initially absent everywhere, began developing in certain clusters around the world
- Poorest regions today often in parts of Sub-Saharan Africa, where state structures were historically weaker (Mozambique)
- Rapid development since 1960 in regions with large empires in ancient times (China)

Unit of observation: country as defined by modern borders

Constructed for each half century 1-1950 CE; 39 in total

Source: Encyclopedia Britannica

For each of 119 countries, each half century, use EB to answer three questions:

- Is there a government above the tribal level?
 1 point if yes; 0 if no; 0.75 if "tribal chief" (footnote 7)
- 2. Is the government local or foreign?1 point if local; 0.5 if foreign; 0.75 if in between

- 3. How much of the territory of the country today was ruled by this government?
 - point if over 50%
 points if between 25% and 50%
 points if between 10% and 25%
 - 0.3 points if less than 10%

To aggregate to a number for each country/period

• Product of points from each question, and also 50 (for some reason; 50 years in each period)

To aggregate to an index for each country

- Sum up with different discount rates; higher weight to more recent years
- Most empirical results in paper use 5% discounting per half century

Regional variation: Table 1

- Europe and Asia on top; Oceania at bottom
- Middle East and North Africa rank below Europe
 - Many had much earlier states than e.g. Scandinavia
 - Probably due to the time period chosen (post 1 CE), and the discounting

Cross-country correlations: Table 2

- Note * here means highest level of significance
- Positive, significant correlations with economic growth after 1960, and levels for later years (but not 1960)
- Also some indications that past state presence is associated with better state performance in modern times

Regressions with growth since 1960 as dependent variable

State history has a robust effect on growth in GDP per capita

- Whole world: Table 3
- OECD: Table 4

Levels regressions: weaker results

Seems effects of state history show up mostly after 1960

Paper does not give many detailed on interpretations

• Maybe rise in trade, or other global changes since 1960, benefited countries with more state history; complementarity?

Borcan, Olsson, and Putterman (2014)

Update of state history data following same methodology as Bockstette et al. (2002)

Now from 3500 BCE to 2000 CE; essentially a complete global measure of state history up until now

- 3500 BCE is the rough birth date of the first documented state (Uruk in the Middle East); zero state presence before that
- Global state presence by now, more or less

Other additions compared to Bockstette et al. (2002)

- More detailed explanation of the methodology for constructing the data
- More countries (159)
- Richer descriptive results; use of time/panel structure; lessons about human history beyond economics
- More regression results
 - Agriculture \Rightarrow Statehood
 - Statehood \Rightarrow Development

On the methodology

 $z_{it}^j \in [0, 1] =$ score on question j, for half-century t, country i

Now State index, $s_{i,t} \in [0, 50]$, is a time/country dependent "flow" variable measuring degree of state presence (or statehood) in country *i*, time *t*

$$s_{i,t} = 50z_{it}^1 z_{it}^2 z_{it}^3$$

(slightly more complicated if there was a change in the scores within a halfcentury) Extended state history, or *Statehist*, $S_{i,\tau} \in [0, 1]$, is cross-sectional variable measuring accumulated statehood from start to $t = \tau$, defined as

$$S_{i,\tau} = \frac{\sum_{t=\tau}^{109} (1.01)^{\tau-t} s_{i,t}}{\sum_{t=\tau}^{109} (1.01)^{\tau-t} 50}$$

Note 1: The total number of half-centuries from 3500 BCE to 2000 CE adds up to 109 (check!)

Note 2: 1% discounting instead of 5%, to make the earlier years count more; otherwise correlation with the Bockstette et al. (2002) measure very close to 1

State age = number of millennia since state first occurs, $z_{it}^1 > 0$ (?)

More variables of interest

Agyears = number of millennia since introduction of agriculture; from separate work by Putterman with Trainor (2006)

Origtime = time (in millennia?) since initial human settlement, from Ahlerup and Olsson (2012); note human settlement came long before agriculture (mostly)

Log GDP per capita in 2000 CE

Geography controls

Absolute latitude, distance to coast/river, elevation, percent arable land, precipitation, temperature, malaria exposure, landlocked

Other

Population density in 1, 1500 CE (originally from McEvedy and Jones 1978)

Urbanization in 1, 1500 CE

Technology adoption in 1, 1500, 2000 CE

Descriptive results: Figures 1, 2

Periods of spurts, stagnation, in the world average

Western region mostly highest scores; here includes North Africa, Middle East, Europe

Americas and SSA have lower scores; spurt at the end

Some reversals toward the end, due to colonization (recall how index gave lower scores if foreign government); cf. Fig C1 in appendix

Regressions

First link: agriculture (+other stuff)⇒statehood

Agriculture came before statehood for (almost) all countries; cf. Figure B1

Causation (most likely) from former to latter

$$\mathsf{State}_i = \alpha_0 + \alpha_1 \times \mathsf{Agyears}_i + \mathsf{controls}_i + \epsilon_i$$

State represents either accumulated index in 2000 ($S_{i,2000}$) or Stateage (see above)

Tables 2, 3

• Strong, robust, positive correlation between time since agriculture and amount of, or time since, statehood

- Well known; first states where agriculture began (Fertile Crescent)

• Table 2, column (1): one more millennium since introduction of agriculture $\implies 0.47$ more millennia (470 years) since first state

- None or small effect from Origtime, once controlling for agriculture: roots not that deep
- Table 3: differentiating between how first state established: internally or externally; latter means ruled by other government
- Stronger effect of Agyears for internally established states (interpretation?)

Second link: statehood \Longrightarrow (modern) development In(GDP/capita)_i = $\beta_0 + \beta_1 \times \text{Statehist}_i + \beta_2 \times \text{Statehist}_i^2 + \text{controls}_i + \epsilon_i$

Non-linear term inspired by e.g. "reversal of fortune" stories; see later

Table 4

- Non-linear relationship: per-capita GDP maximized around Statehist= .356; roughly same as UK
- Only for extended state history measure (Panel A), not that from Bockstette et al. (2002) (Panel B)
- None or small effect from Origtime

Table 5

- Acenstry-adjusted measures, using Putterman-Weil matrix (more later)
- Idea: let e.g. Canada's state history be a weighted average of those of peoples migrating there after 1500
- Use both state history up to 1500 (Panel A), and up to 2000 (Panel B)
- Non-linear relationship even stronger, but not so robust for the 2000 measure (why?)

Tables 6, 7, 8: skip for now

Acemoglu, Johnson, and Robinson (2002)

Older paper again, with big impact at the time

One in a series of papers by same authors on institutions and development; see e.g. 2001 AER paper on settler mortality

Idea: countries/societies that were more developed around 1500 are poor today because of European colonization

• Higher levels of development in 1500 meant better infrastructure for extraction, and more to extract

- This induced Europeans to set up *extractive institutions*, which led to underdevelopment later
- Other locations became *Neo-Europes*, meaning Europeans migrated there, and set up (European) institutions that allowed private property, often labelled *inclusive institutions* in later work
- (Premise here that European institutions already were relatively inclusive by 1500)

Examples: Extractive institutions in Latin America; non-extractive ones in North America

Phenomenon labelled Reversal of Fortune

Some further observations when reading introduction through the lens of more recent research:

- Main motivation in terms of institutions *or* geography; dichotomy emphasized but not motivated much
- No discussion about whether geography could affect Europe's institutions, or early development elsewhere (strange reading of Jared Diamond in Nippe's opinion)
- But we know that either geography, or chance, must be the *fundamental* determinant of institutions. This does not shine through anywhere in the text

 Later work by A+R (e.g., "Why Nations Fail") uses concepts like *institutional drift*; probably what they had in mind in their 2002 QJE paper too

Data:

- Log GDP/capita in modern times
- Proxies for past development:
 - Urbanization around 1500 from Bairoch and other sources
 - Population density around 1500 from McEvedy and Jones (1978)
 - Big issue if these proxy for GDP/capita or something else; think of standard Malthusian model

- Institutions:
 - Protection again expropriation risk 1985-95 from Political Risk Services
 - Constraints on the Executive in 1990; variable from Polity III data (earlier version of the same dataset used to measure democracy)
 - Same as above but for first year of independence (Polity data only defined for independent countries)
 - Only last measure is non-contemporary
- Instrument for institutional choices: settler mortality
- Geography controls etc.

Table III: urbanization in 1500 \Rightarrow modern development

- Sample: former colonies
- Negative and significant effects: more urban (=richer?) countries in 1500 are poorer today
- Robust to changes in the sample composition
- Table IV: varying how urbanization is measured

Table V: population density in 1500 \Rightarrow modern development

- Similar results as for urbanization
- Note e.g. results with arable land and population entered separately (Panel B); seems density is what matters

Table VI: more robustness checks

- Note columns (9), (10): urbanization does not have negative effect in sample of non-colonies, suggesting the pattern should be explained by colonization
- (But how about population density?)

Section III.D of the paper

- Effect had nothing to do with Europeans simply stealing resources; no change immediately after 1500
- Per-capita income differences emerge later; Figures IVa-b
So far documenting that there was some sort of reversal. But why?

AJR's preferred explanation: *institutions*

What determined the type of institutions colonial powers set up?

- 1. What seemed profitable. In places with high population density you can enslave and/or tax the population
- 2. Whether Europeans could settle. In colder places (e.g. Canada) Europeans did not die from tropical diseases

Guides their choice of IV variables

Table VII: urbanization, population density in $1500 \Rightarrow$ institutions

• Dependent variable: institutions measured by one of the three variables above

- Two contemporary; one measured at independence

- Both independent variables (urbanization, population density in 1500) significant with the right sign
- Although not so much when entered together? (cf. Footnote 21)

Table VIII: IV regressions

- $Y = \log \text{GDP}/\text{capita}$ in 1995
- X = institutions
- Z = settler mortality
- (urbanization, population density in 1500 enter first and second stage as well)
- AJR argue their institutions story consistent with the results in Table VIII

Valid specification?

- Only if settler mortality (Z) affected modern development (Y) through institutions (X) only and not directly
- Controversial topic still today
 - Jeffrey Sachs and others believe, e.g., malaria hampers development
- Other aspects of the settler mortality instrument also controversial
 - See Albouy (AER 2012); replies by AJR

Yet another angle on the reversal-of-fortune theory

- In terms of the population, the Neo-Europes were more or less copies of the powers that colonized them
 - Example: US and Canada have mostly English (+French) language, traditions, institutions, cultures, etc.
- But all regressions use urbanization, population density in pre-colonized North America
- Alternative approach: use ancestry-adjusted measures (Putterman and Weil 2010, Chanda et al 2014)

Putterman and Weil (2010)

Ambition: create a matrix that gives a complete description of migration since 1500; source and target countries

Q. Consider the population of country i in 2000. What fraction of this population had its ancestors in 1500 living in country j?

Very difficult question to answer

Main source: genetic data on differences in allele frequencies; allele is a sequence at a particular position in the DNA; see Appendix I for details on printed/online sources (e.g. CIA World Factbook) Many problems/issues. Examples:

- How do you assign source country to people with mixed ancestry? Answer: treat them as having fractions of their ancestry in different source countries, e.g., 40% Swedish, 60% Chinese
- If someone's ancestors lived in country A in 1500, and country B in 1800, which counts as source country? Answer: country A

Suppose we have an answer to question Q above for each country pair i and j

This generates a matrix

- 165 rows, one for each present-day country
- 172 columns, one for each possible source country (same 165 plus 7 more small countries)
- All elements between 0 and 1; most close to one along the diagonal
- Rows sum to one

Table I: description of flows across 11 world regions (continents)

- Descendants per person of 1500: how many genetic offspring each person living in 1500 on that continent has left behind in 2000
- Fraction of the current population on the continent who are descendants from people on same continent
- Fraction of the total descendant population who are on original continent
- Total number of descendants not on original continent
- Example: 103 million Sub-Saharan African descendants outside SSA itself, about 14% of total

Next step: use matrix to ancestry adjust some early-development variables

• State history from Bockstette et al.; here denoted *statehist*

- 5% discounting, 1-1500 CE (29 half centuries)

• Millennia since Neolithic; here denoted *agyears*

Example

Two countries, A and B, with *statehist* levels .9 and .1, respectively 80% of people in A have ancestors in A, rest have ancestors in B 90% of people in B have ancestors in A, rest have ancestors in B

$$\underbrace{ \begin{bmatrix} .74 \\ .82 \end{bmatrix} }_{\text{adjusted statehist}} = \begin{bmatrix} .72 + .02 \\ .81 + .01 \end{bmatrix} = \underbrace{ \begin{bmatrix} .8 & .2 \\ .9 & .1 \end{bmatrix} }_{\text{PW-matrix statehist}} \times \underbrace{ \begin{bmatrix} .9 \\ .1 \end{bmatrix} }_{\text{statehist}}$$

Which countries' *statehist*, *agyears* change when ancestry adjusted? Figures II, III

Main results: Table II

• Bigger coefficient estimates, more precise estimates, higher R^2 with adjusted than non-adjusted measures

Alternative ways to adjust: Table III

- Assigning *statehist*, *agyears* of UK to all Neo-Europes: columns (1)-(4)
- Fraction native, fraction retained as controls: (5)-(6)
- Fraction European descent, fraction European languages as controls: (7)-(12)

Tables IV: add geography controls

- Variables
 - Landlocked dummy
 - Eurasia dummy
 - Absolute latitude
 - Suitability for agriculture; 4-point measure from Hibbs and Olsson (PNAS 2004)
- Ancestry-adjusted *statehist*, *agyears* still significant

Table V: other measures of early development than *statehist*, *agyears*

- First two meant to capture mechanisms related to Diamond (1997)
 - *geo conditions*: first principle component of "climate", latitude, size of landmass, east-west orientation of land mass; based on Olsson and Hibbs (EER 2005)
 - *bio conditions*: first principle component of: number of domsticable animals, wild plants suitable for creating agricultural seeds
- Technology measures from Comin et al. (2010)
- Believed to have impacted timing of transition to agriculture, statehood according to Jared Diamond

Table VI: using measures of current institutions and culture as dependent variables

- Ancestry-adjusted *statehist, agyears* correlates with some of them, but not all
- These measures of institutions and culture are contemporary (Is this problematic? Interpretation?)

Table VII: source region, current region

- Current region is a dummy for whether the country is located there
- Source region is fraction population who have ancestors from each of the 11 regions
 - E.g., most observations have zero for source region US/Canada, except US and Canada themselves, which have some small fraction native population; many countries have positive values for
- Source region regression in column (1) has higher R-squared than current region regression in column (2)

• Column (3): both sets of variables together; being from Europe by ancestry is better than being there now, same for East Asia

Table VIII: heterogeneity in early development

- Weighted within-country standard deviation in ancestral *statehist, agyears* for each group; weights are those used for ancestry adjustment
- Standard deviation has positive effect; heterogeneity in the population's ancestry-adjusted early development is "good"

Tables IX-XI: skip for now

Chanda, Cook, and Putterman (2010)

New look at Acemoglu, Johnson and Robinson (2002)

Benchmark: same focus on colonized countries, same outcome variable (log GDP/capita in 1995), as AJR

Two robustness checks:

- Ancestry adjustment of AJR's measures of preindustrial development: population density and urbanization around 1500
- Add new variables measuring early development: time since agriculture, state history, technology in 1500 (last one from Comin, Easterly, and Gong 2010)

First striking results in Table 1

- Columns (1) and (3): AJR's original benchmark regressions with urbanization and population density as dependent variables, for samples of 41 and 91 countries, respectively; former colonies
 - Same regressions as in columns (1) of Tables III and V in AJR
 - Reversal of fortune: negative and significant effects on log GDP/capita in 1995 for each of the two measures of early development
- Columns (2) and (5): corresponding to (1) and (3), but for smaller sample of 28 and 81 countries
 - Countries for which ancestry adjusted measures can be computed

- Sparse data on urbanization in particular, but also population density; missing for many countries of migratory origin (maybe in Africa?)
- Reversal of fortune holds (although already weaker for urbanization), still without ancestry-adjustment
- Columns (3) and (6): with ancestry adjustment
 - Coefficient estimates become positive; significant at 10% level
 - AJR's reversal result is reversed; persistence of fortune, if anything

Figure 1: reversal of the reversal when ancestry adjusting

Next : introduce the new measures

Table 2: all five (two old, three new) show positive pairwise correlations (as we already knew for some of them)

- Seem to broadly measure similar dimension of preindustrial development
- Note, however, the low correlation between urbanization and both time since agriculture and technology in 1500; small samples

Table 3: regression with the three new variables, ancestry adjusted and not

- Negative signs, but insignificant, with no adjusting: AJR's result not robust even without ancestry-adjustment
- Signs positive and now also highly significant when ancestry adjusting
- See Figure 2 for illustration

Robustness checks of the robustness checks

Table 4: add same controls as in AJR Tables III and V, columns (8)-(11): labelled latitude, climate, resources, and religion

Results in Tables 1 and 3 do not change

- For urbanization and population density: ancestry adjusting makes previously negative and significant effects become positive, mostly insignificant; (more) significant when controlling for religion
- Recall small sample of 28 and 41 countries respectively

- For remaining three: results go from insignificant, with varying signs, to negative and mostly significant (never below 10%)
- Larger samples

Table 5: different samples

- Columns (1) and (2): only the Americas; same as Table V, column (4), in AJR
 - Result for population density interesting: from negative and significant to positive and significant!
 - Figure 3 explains why: ancestry adjusting reverses population density measure for the Americas
- Columns (3) and (4): all countries with more than 20% of current population with foreign origin
 - Similar result as with only the Americas

- Columns (5) and (6): excluding US, Canada, NZ, Australia, plus city states: Hong Kong and Singapore
 - Results robust
 - (What about keeping HK+Singapore; closer to AJR?)
- Columns (7) and (8): including noncolonies
 - Results robust
 - (How about results with only noncolonies?)

Table 6: measuring GPD/capita outcomes in different years, 1960 and 2009

For 1960, also alter the ancestry adjustment to refer to migrations prior to 1960

- AJR's result go way for urbanization when using 1960 as outcome year, even without adjustment
- Effects when ancestry adjusting are larger and more significant for 2009 than for 1995 (and 1960): "strengthening of persistence"

⁻ Why? Possible research topic. (Rise in international trade?)

Section III of paper (on channels) – skip for now

Hariri (2012)

Examines link state history⇒democracy

Story all about colonial histories

Related to AJR (2002), but outcome variable democracy rather than log GPD/capita

Natural starting point for many political scientists; paper in the American Political Science Review (APSR)

Story

How strong state a country had at the onset of the colonial period (around 1500) determined its colonial experience: whether of was colonized at all, and, if it was, how much, and what type of colonization

- Some countries had strong enough states to resist European colonization altogether; this also enabled them to suppress local opposition⇒less democracy today
 - Examples: Ethiopia (only African country not to be colonized); China;
 Japan
- Others were conquered and then ruled by European powers through existing state infrastructure (extractive institutions in AJR's terminology)⇒less democracy today

- Examples: Peru; Mexico: not enough statehood to resist Spanish conquest but enough to allow Spain to rule through existing authority
- Some countries had none or weak states, and were settled by Europeans, who took with them rights/institutions (or something else)⇒more democracy today
 - Examples: Canada, US, Australia, etc.

Note distinction to AJR:

• (1) Focus on (and measure of) statehood; (2) that statehood matters also for those who were *not* colonized; in AJR all about effects of colonization itself

Econometric specifications

Dependent variables:

- Democracy; mainly from Polity IV and referring to period 1991-2007
- Measures of colonization
 - Colonial dummy; colonial duration (in centuries)
 - Fraction of population speaking European language, or of European descent
 - Extent of indirect rule (fraction colonially recognized court cases; see paper)

Independent variables:

• State history up to 1500, from Putterman's website (Bockstette et al. 2002)

Instrument:

• Time since agriculture

Results

Table 1, Figure 1: State history \Rightarrow democracy

• More state history, less democracy

Table 2, Figure 2: instrumenting statehood with time since agriculture

• Results from Table 1 hold

Table 3: State history \Rightarrow colonization

• More state history, less colonization
Table 4: Colonization \Rightarrow democracy

• More colonization, more democracy