Midterm Exam – Econ 7110 22 March 2017 Department of Economics York University

Instructions: Unless otherwise explicitly stated, for full mark you must show how you arrived at your answer to a problem. Answers must be given on the answer sheets provided. Ask for extra answer sheets if needed. Do not fold the answer sheets or write on the back.

Part A: do Problems 1 and 2 below

1. The Malthus model [10 marks]

Consider a standard Malthusian OLG model. Agents live for two periods, as dependent children and working adults. Adults active in period t earn y_t and consume c_t ; they have n_t children and each child consumes/costs an exogenous q > 0 units of the consumption good. Utility is

$$U_t = (1 - \beta) \ln c_t + \beta \ln n_t,$$

where $\beta \in (0, 1)$ is an exogenous preference parameter. Total output (and income) in period t is

$$Y_t = (A_t L)^{\alpha} P_t^{1-\alpha},$$

where $\alpha \in (0, 1)$ is the exogenous land share of output, L is an exogenous (and constant) amount of land, P_t is the size of the adult population (and thus the workforce) in period t, and A_t is land productivity in period t. Per-adult income in period t is given by $y_t = Y_t/P_t$. (a) Assume that land productivity grows at a constant and exogenous rate g > 0, meaning $A_{t+1} = (1+g)A_t$. Show that income per adult (y_t) in steady state (on the balanced growth path) equals $q(1+g)/\beta$. Show each step, including how to set up and solve the utility maximization problem. [3 marks]

(b) Under the same assumption about growth in land productivity as under (a), find a difference equation for y_t . Your answer should be an expression for y_{t+1} in terms of y_t and some, or all, of the exogenous variables β , q, g, L, and α . [3 marks]

(c) Now let $A_{t+1} = (1+g_t)A_t$, where g_t equals some constant g_L for $t \in \{0, 1, ..., \hat{t}-1\}$, and then jumps to some higher level $g_H > g_L$ for $t \in \{\hat{t}, \hat{t}+1, \hat{t}+2, ...\}$. Draw the time path of y_t . Use a diagram with y_t on the vertical axis and t on the horizontal axis. Assume that the economy is in steady state before the jump in g. Indicate \hat{t} on suitable axis. [2 marks]

(d) Under the same assumptions as under (c), draw the time path of log total adult population, $\ln(P_t)$. Use a diagram with $\ln(P_t)$ on the vertical axis and t on the horizontal axis. Indicate \hat{t} on suitable axis. [2 marks]

Note: for 1 (c)-(d) you do not need to explain how you arrived at your answer, just draw the diagrams correctly.

2. The Acemoglu and Robinson (2000) model [10 marks]

Let $\lambda > 1/2$ be the fraction of the population belonging to the non-elite, h^p the capital of a non-elite agent, and h^r the capital of an elite agent, where $h^r > h^p$. Let Ah^i be pre-tax income if working in market production, which is taxable, and Bh^i the income if working in non-taxable home production, where A > B and i = p, r.

(a) Find an expression for the maximum tax rate, denoted $\hat{\tau}$, consistent with agents choosing to work in the market sector. [2 marks]

(b) Let $H = \lambda h^p + (1 - \lambda)h^r$ be total capital. Then τAH is the transfer per agent (both elite and non-elite) associated with any tax rate $\tau \leq \hat{\tau}$. Find an expression for non-elite income, net of taxes and transfers, when $\tau \leq \hat{\tau}$. Your answer should be in terms of some, or all, of $\tau, \lambda, h^r, h^p, A$, and B. Also show that the expression you have derived is increasing in τ . [2 marks]

(c) Under democracy the tax rate is set to $\hat{\tau}$. Let $V^p(D)$ be the value of democracy to the non-elite (i.e., the value of having democracy in the current period and onward). The non-elite's per-period payoff under democracy is the same as non-elite income, and the discount factor is denoted β . Find $V^p(D)$ in terms of some, or all, of β , λ , h^r , h^p , A, and B. [3 marks] (d) Revolution means that the non-elite confiscate the elite's capital, and also that a fraction $1 - \mu^h$ of all capital (H) is permanently lost. Find the value to the non-elite of revolution, here denoted $V^p(R)$. You answer should be in terms of some, or all, of β , λ , μ^h , h^r , h^p , A, and B. [3 marks]

Part B: answer two of questions 3-5 below (not all three)

3. Migration [5 marks]

Explain how to compute an ancestry-adjusted measure of some cross-country variable, like state history, using the Putterman-Weil matrix. What are the elements of this matrix?

4. Reversals [5 marks]

Explain what the phenomenon *reversal of fortune* means, as used by Acemoglu, Johnson, and Robinson (2002). What do they argue caused the reversal of fortune?

5. Democracy [5 marks]

Describe very briefly what different cross-country measures of democracy were used in the papers discussed in class. How are these measures of democracy correlated with levels of (log) GDP/capita in the data? What does the *modernization hypothesis* say?

Answer sheet for Problem___Econ 7110, Midterm 22 March, 2017

Student Name:

SID Number:

Sketches of solutions to Problems 1 and 2

1.

(a) You should first find n_t that maximizes $U_t = (1 - \beta) \ln(y_t - qn_t) + \beta \ln(n_t)$. You need to write the first-order condition with respect to n_t and show that it gives $n_t = (\beta/q)y_t$. Then you need to use that A_t and P_t grow at the same rate on a balanced growth path (where y_t is in steady state). Together with $P_{t+1} = n_t P_t$ and $A_{t+1} = (1 + g)A_t$ this gives $n_t = (\beta/q)y_t = 1 + g$, which can be solved for the steady-state level of y_t , which we may denote \overline{y} , i.e.,

$$\overline{y} = \frac{q(1+g)}{\beta}.$$

(b) You need to use $y_{t+1} = Y_{t+1}/P_{t+1}$, $P_{t+1} = n_t P_t$, $n_t = (\beta/q)y_t$ [from (a)], and the production function forwarded one period. The answer should be

$$y_{t+1} = y_t^{1-\alpha} \left(\frac{q \left[1+g\right]}{\beta}\right)^{\alpha}.$$

(c) y_t should be constant up to, and including, period \hat{t} . Thereafter y_t increases and asymptotically converges to a higher (non-growing) level.

(d) P_t should initially grow at a constant (gross) rate of $1 + g_L$, so the slope of the path of $\ln P_t$ should initially be $\ln(1 + g_L) \approx g_L$, then exceeding the previous trend from $\hat{t} + 2$, and gradually converging to one with slope $1 + g_H$. (Note that $\ln A_t$ exceeds its previous trend from $\hat{t} + 1$ and $\ln P_t$ from $\hat{t} + 2$.)

In the exam I accidentally asked for the time path of P_t , instead of $\ln P_t$. P_t should be growing at an exponential rate and exceed its previous (exponential) trend from $\hat{t} + 2$. You got full mark if you drew either of those paths, with deductions for anything inconsistent with both of them.

2.

(a)

$$\widehat{\tau} = \frac{A - B}{A}$$

(b) Non-elite income can be written

$$(1 - \tau)Ah^{p} + \tau AH$$

= $(1 - \tau)Ah^{p} + \tau A[\lambda h^{p} + (1 - \lambda)h^{r}]$
= $Ah^{p} + \tau \{A[\lambda h^{p} + (1 - \lambda)h^{r}] - Ah^{p}\}$
= $Ah^{p} + \tau A(1 - \lambda)(h^{r} - h^{p}).$

which is increasing in τ .

(c) Non-elite income becomes

$$Ah^{p} + \widehat{\tau}A(1-\lambda) \left(h^{r} - h^{p}\right)$$

= $Ah^{p} + (A-B)(1-\lambda) \left(h^{r} - h^{p}\right),$

which implies

$$V^{p}(D) = \frac{Ah^{p} + (A - B)(1 - \lambda)(h^{r} - h^{p})}{1 - \beta}$$

(d) The per-period income per non-elite agent under revolution is

$$\frac{\mu^h A \left[\lambda h^p + (1-\lambda)h^r\right]}{\lambda}$$

which implies

$$V^{p}(R) = \frac{\mu^{h} A \left[\lambda h^{p} + (1 - \lambda) h^{r}\right]}{(1 - \beta)\lambda}$$